

Towards a sustainable energy supply in cities SOLSTHORE

Jef Poortmans, Eszter Voroshazi, An Hardy, Jeroen Büscher, Johan Driesen, Hans Goverde, Kris Baert

SolSThore

What is it about?

- Why this EFRO SALK project:
 - LCOE of PV has reached "grid parity"
 - Further reduction of LCOE requires focus on kWh's, not only on W_p
 - Requires study/improvement of PV-modules
 & PV-system integration
 - PV-system + storage system is the name of the game
 - The rebirth of DC

SolSThore

Bringing the different expertise together ...

- Strong position in PV R&D
 - Global leader in PV-cell technology
 - Presence in other parts of the PV value chain to be reinforced
- .. and is growing in battery research:
 - Material- and cell oriented R&D-activities in imec and UHasselt
 - Battery Management System R&D at VITO
- High potential in linking power device development-expertise to DC-application

SolSThore

Project structure

- Activity 1: Innovative cell and module technology
- Activity 2: Towards safe and reliable highly performing local electrochemical storage based on Li-ion system
- Activity 3: Power electronics in a DC-nanogrid context
- Activity 4: Modelling and prediction of energy yield
- Activity 5: Demonstrators in BIPV and commercial roof

Activity 1 Innovative cell and module technology

Eszter Voroshazi

Technology seeds for world class innovation

Crystalline silicon PV module technology and characterisation and their reliability testing & simulations

Thin-film (perovskite) PV module technology

Bifacial cell and module tech' for BIPV

- Woven cell interconnection technology for bifacial cells: from concept to 9-cell demonstration
 - Optimised woven fabric combines encapsulation and interconnection metallisation in one sheet
 - Optimised solder and lamination process
 - Proven <1% CtM current loss (while 1-3% with latest industrial technologies)
- Record performance busbarless and bifacial cells:
 22.8% and 98% bifaciality
 - Integration with SmartWire interconnection proven in 60-cell module
 - ✓ Optimised process to pass 200 thermal cycles < 5% loss</p>
- Next: ICON project starting for industrial fabrication of the foils

For more: Poster in EV2 PV lab and live demo in EV2 entrance

3 generations of real-life BIPV demonstrators

2016: 9-cell (10 pcs) modules with industry baseline technology

2017: 9-cell modules (12 pcs) with imec cells and SmartWire interconnection

2018: **60-cell** (5 pcs) and 9-cell (12 pcs) **BIPV modules** benchmarking of latest ribbon and industrial and imec multi-wire interconnection technologies

(BI)PV module prototyping and characterisation facilities

- cSi BIPV assembly line (1x1.6m²)
 - Automatic module assembly tool
 - Laminator for glass/glass and curved modules

Europese Unie

- TFPV assembly (30x30cm²)
 - Laser patterning
 - Slot-die coating
 - Vacuum evaporation/sputtering
 - PV module performance and quality testing
 - Bifacial LED based solar simulator
 - Spectral response and reflectivity
 - Material characterisation tools
 - Large area climate chambers

For more: Poster and visit in EV1 and EV2 labs

Activity 3 Development of power electronics

Johan Driesen

Three arguments: compatibility, power transfer capability and controllability

- Motivation for LVDC distribution systems
 - Compatibility with DC devices
 - Increased power transfer capability
 - Increased controllability
- Motivation for **bipolar** LVDC [1-4]
 - Increased power transfer capability
 - Two voltage levels available
 - Conduction losses are reduced
 - Potentially more reliable
 - But: voltage balancing converters required

[1] G. Van den Broeck, S. De Breucker, J. Beerten, M. Dalla Vecchia, and J. Driesen, "Analysis of Three-Level Converters with Voltage Balancing Capability in Bipolar DC Distribution Networks," in International Conference on DC Microgrids, 2017, 8 pages.

[2] H. Kakigano, Y. Miura, and T. Ise, "Low-voltage bipolar-type DC microgrid for super high quality distribution," *IEEE Trans. Power Electron.*, vol. 25, no. 12, pp. 3066–3075, Dec. 2010.

[3] J. Lago, J. Moia, and M. Heldwein, "Evaluation of power converters to implement bipolar DC active distribution networks— DC-DC converters," in *Energy Conversion Congress and Exposition (ECCE)*, 2011, pp. 985–990.

[4] T. Dragicevic, X. Lu, J. Vasquez, and J. Guerrero, "DC Microgrids–Part II: A Review of Power Architectures, Applications and Standardization Issues," *IEEE Trans. Power Electron.*, vol. 8993, no. 99, pp. 1–1, 2015.

LVDC test facility

A \pm 500V bipolar DC test grid developed in the SolSThore project

LVDC test facility: example set-up

INFORMENCE

Place of the DC-DC converter in the BIPV concept

Design specifications - Electrical

- Input voltage: 10 50 V
- Input current: max 10 A
- Output power: max 300 W
- Output voltage: 380 V (DC)
 - DC bus gets stabilised by central inverter
 - Unipolar
- MPPT
- Modularity
- Communication with central inverter

Europese Unie

Consequences of the required lifetime

- General design
 - Low component count
 - Simple and robust
 - Limit temperature rise
 - Redundancy
 - Use components that are rated up to 125°C
- For cooling
 - Only passive is a viable option
 - Temperature sensors?

• For switches

- Limit internal temperature (die)
- Soft switching?
- Use GaN
- For capacitors
 - No electrolytic capacitors
 - Limit current ripple
 - Limit max voltage

Comparison of Si vs. GaN in circuits: boost converter

- Two PCB prototypes have been developed
 - (a) employs Si MOSFETs
 - (b) employs GaN HEMTs and is three times more compact

(a) 115x250x30 mm³

Energy

Board	Si MOSFET	GaN HEMT
Switching frequency	100 kHz	200 kHz
Switch	Infineon IPB320N20N3	EPC 2047
$V_{ds,max}$	200 V	200 V
$I_{d,max}$	34 A	32 A
$R_{ds,on,max}$	32 m Ω	10 mΩ
$Q_{g,tot,max}$	29 nC	10,2 nC
C_{oss}	180 pF	585 pF
Footprint	10,7x16,05 mm ²	4,6x1,6 mm ²
Diode	VS-	VS-
	10CSH02HM3	10CSH02HM3
$V_{R,max}$	200 V	200 V
V_F	0,75 V	0,75 V
Qrr	53 nC	53 nC
Footprint	6,8x4,8 mm ²	6,8x4,8 mm ²
Inductor	BOURNS SRP1770TA	BOURNS SRP1770TA
Inductance	100 µH	68 µH
$R_{L,DC,max}$	118 mΩ	80 mΩ
Footprint	18,5x12,5 mm ²	18,5x12,5 mm ²
Driver	Silicon Labs Si8272	Texas Instruments UCC27611

Comparison of Si vs. GaN in circuits: isolated flyback converter

Si Mosfets, bulky transformer with undesired resonances

Europese Unie

SHOVEREN &

GaN HEMTs: improved density

Conclusions

- Energy transition at building level: need to rethink the whole internal electricity system
- DC nanogrids allow efficient, affordable, safe integration of BIPV, storage, smart loads
- Living lab meeting safety standards constructed at EnergyVille
- Power converter development using GaN technology

Activity 4 Modelling and Forecasting PV Energy Yield

Hans Goverde (Georgi Yordanov)

SolSThore – Activity 4

Indoor characterisation

Development of dedicated characterisation

tools and measurements

SolSThore – Activity 4

Outdoor measurement

Europese Unie

ropees Fonds voor Regionale Ontwikkeling

AGENTICIUM IMPONEREN & CHOSENEREN

1

Energy Production - prediction [kWh]

SolSThore – Activity 4

Energy yield Simulations

Activity 5 PV system demonstrators

Kris Baert

SolSthore Activity 5 : PV system integration

- PV integration in facades
- Commercial roof PV connected to a bipolar DC grid -> see
 - poster : Low Voltage DC grid (EV-1, 2F, Home Lab)
 - demo : rooftop PV installation (EV-1)
- Grid compliance testing by Real-Time Grid Emulator-> see
 - Poster : Grid Compliance Testing of DC/AC PV Inverter (EV-1, Matrix Lab, 0F)

The case for integration of PV in facades of high-rise buildings 2020 NZEB directives => enhanced use of PV on buildings

- rooftop area for PV often scarce
- aesthetics suited for office-buildings
- high facade engineering capacity
- benign to the local grid (congestion !)
 - generation close to consumption
 - in sync with airco load
 - East South West facades => flatter day profile
 - seasonal profile
- façade cost Euro/m² marginally increased and compensated by enhanced "greening"

Europese Unie

The case for PV in "curtain walls"

- Industrially pre-fabricated
- Semi-standardized dimensions
- Millions of m² / year of facades installed

Thermal and electrical performance

Curtain wall BIPV element feeding into DC Nanogrid

- Temperature distibution
- Energy yield
- DC/DC converter effic

Impact of black vs. white backsheet in PV module:

- on operating temperature

- on energy yield

Impact of ventilation :

- on operating temperature
- on energy yield

=> See Poster "BIPV set-ups" in Matrix Lab (EV-1, 0F)

What's next ?

- Frame integration of EnergyVille's DC/DC converter
- Develop, test and model other facade-BIPV building solutions
 - for non-office buildings
 - for integration in solar shades

•

See demo : Facade-BIPV panels on East – South- West of EnergyVille-2 (2F)

Eager to find out more? The scientific publications developed during the project can be found using the QR-code

