

Simulation of the direct and diffuse components of the solar radiation, to improve the precision in the solar resource estimates

Thierry Elias

HYGEOS, Lille, France

te@hygeos.com

The company

'Cooperative' ('SCOP') created in 2001: daily democratic running

- •11 collaborators
 - 6 Ph. D. scientists, project leaders
 - 3 engineers
 - I Ph.D. student ('CIFRE' funding)
 - I administrative responsible
 - + few-month internships
- •Few departures among the employed staff:
 - © Important stability with benefits for research
 - ☺ Solidarity
 - ⊗ Ageing ...

Hosting building, Euratechnologies, Lille

The customers

Spatial agencies •EUMETSAT •ESA (European Space Agency) •CNES (Centre National d'études Spatiales) •NASA, KORDI, ...

- •The European Commission
 - The Copernicus services
 - Research projects (H2020, InterReg, …)
- Industries as
 EDF: renewable energy
 CLS: operational oceanography

Photovoltaic solar resource

surface

Expert in radiative transfer in the atmosphere.

Analysis of the optical signal: satellite data and ground-based measurements

Application fields and parameters

Application fields and parameters

- 2. The ASoRA project
- 3. Solar resource in cities
- 4. The SMART-G code
- 5. Atmospheric variability
- 6. Validation
- 7. Conclusion

Solar plant bankability

Solar resource in the largest tower concentration solar plants (CSPs) ?

Strong constraints of precision: 100 MW electricity, loss by only 1% = 1 MW lost ! ~1 000 000 000 euros, loss by 1% = large financial cost !

HYGEOS Solarise 14/05/2019, Amiens

Impact of the atmospheric scattering in the slant path

"By afloresm - SOLUCAR PS10 (2), CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=2821738"

Scattering of the solar radiation by the atmosphere

HYGEOS Solarise 14/05/2019, Amiens

Slant path attenuation by satellite remote sensing

Research in collaboration with the LOA

2017- : 1 Ph.D. thesis supervised in collaboration with the Laboratoire d'Optique Atmosphérique (LOA, Lille, France) Influences 3D on DNI an collected color resource

on collected solar resource

3. Solar resource in cities (solar cadastre)

Fast and physical: precise and detailed

Physical: scattering, absorption,
reflection
→ precise and detailed
computations

+ fast

→ Generation of solar resource data sets: **Dedicated** (e.g. Lille over 10 years, PV, ...) **Detailed**: direct, diffuse inclined, spectral, ... **Resolved**: 1 hour, ~1 km²

[Ramon et al., 2018]

Fig. 3. Various Stokes estimates at different levels for one particular photon. The photon path is in black, with black dots symbolizing random events l starting from l = 0 and ending with the escape of the photon. We show here one single direction for local estimate. The red symbols correspond to local estimate of radiance at an altitude z in the atmosphere while the blue symbols correspond to a local estimate of radiance at an altitude z in the ocean (see text).

HYGEOS Solarise 14/05/2019, Amiens

Direct and diffuse

Computation of both direct and diffuse components, and not only GHI

Because shadows on the direct solar radiation

Direct and diffuse

Computation of both direct and diffuse components, and not only GHI

Because shadows on the direct solar radiation

Direct and diffuse

Computation of both direct and diffuse components, and not only GHI

Because mask on the diffuse solar radiation

2nd contributor: aerosols

The protocol is validated

Precision depends on the input data

Input data for aerosols: MERRA-2

Confirmed in diffuse

Best model: $Kd = \{1+[A(Kt-0.5)2 + B(Kt-0.5) + 1]-n\}-1/n$

		RMSD (W/m2)	relative (%)
	Evora (all-sky):	70	55
	Our computations for Lille:	27	24
9	HYGEOS Solarise 14/05/2019, Amiens		

7. Conclusion and perspectives

Ongoing tests for input data sets for clouds

HYGEOS: radiative transfer in the atmosphere & data sets

For a solar cadastre application:

HYGEOS provides the radiative parameters above the roof layer. Not only GHI, but also the direct and diffuse components are precisely

computed.

Validation of the protocol:

24 W/m2 (4%) difference in DNI between computations and observations in clear-sky conditions at Lille in 2011.

Precision also depends on the input data set: 59 W/m2 in DNI with MERRA-2, 27 W/m2 (24%) in DiffHI, smaller than with other operational products.

Validation to be done with measurements of GTI

Tests of cloud input data sets

