

www.interregsolarise.eu **KU LEUVEN**

Interreg

SOLARISE the same by some the same time to

Oost-Vlaanderen 2 Seas Mers Zeeen

SOLARISE in part in such that

2

Ghent Technology Campus Faculty of Engineering Technology

PROJECT

KU Leuven TC Ghent

Leader of WP1 (Contextual framework) with activities and deliverables :

- Guidelines for benchmarking and pilots
- Technical report on smart grids
- Report regarding solar energy market analysis, legal issues and future potential
- Report regarding solar energy harvesting cost and investment models
- Technical report on hybrid PV/T systems
- Technical report on innovative solar technologies
- Database as inventory of existent pilots, of benchmarks and of good practices

Output 1: Guide package

on legislation, market, technologies and best practices in the 2Seas

5

Oost-Vlaanderen 2 Seas Mers Zeeen

SOLARISE and see the second second second

Ghent Technology Campus Faculty of Engineering Technology

Global energy context: RE roadmap 2050?

Electricity consumption (TWh) Industry and buildings final energy consumption (PJ/yr) 100 000 350 000 350 000 90 000 300 000 300 000 80 000 250 000 250 000 70 000 60 000 200 000 200 000 50 000 150 000 150 000 40 000 30 000 100 000 100 000 20 000 50 000 50 000 10 000 0 0 2015 2050 2050 2050 2015 2050 Reference REmap Reference REmap Case Case — Case Case -Others (incl. marine and hybrid) District heat: Renewable Geothermal Electricity: Renewable Bioenergy Modern biomass Hydro power Traditional biomass Wind. oothormal heat

Transport final energy consumption (PJ/yr)

Source: IRENA 2018 'Global energy transformation: A roadmap to 2050'

Solar thermal

Solar PV (incl. CSP)

NOTERETEWODIES

Ghent Technology Campus Faculty of Engineering Technology

The potential of solar thermal by 2050

Source: IRENA, Global Energy Transformation 2018

EU target of 1 m2 of solar-thermal installations per person

EU energy context: Renewables

Global energy context: Energy consumption

EUROSTAT: Final energy consumption in the residential sector by type of end-uses for the main energy products, EU-28, 2016

UPJV Amiens 18.10.2018

2Seas energy context – embedded in EU

Investment: extra EUR 177 billion per year of investment from 2021 to meet 2030 climate & energy targets Crucial role for EFSI

10

Economic growth*: 1% increase in GDP EUR 190 billion into the economy 900,000 new jobs *Upper end of estimates

Decarbonisation: Carbon intensity of the economy 43% lower in 2030 than in 2015 72% share of non-fossil fuels in electricity generation in 2030

2Seas energy context – embedded in EU

11

and the part of the state of the state

Ghent Technology Campus

Faculty of Engineering Technology

Cost savings by RE-sourcces

- Electric vehicles.
- Biodiesel
- Geothermal district heating
- Solar thermal in industry

12

Additional cost

- Biomass in industry
- Conventional bioethanol
- Biomass in power and district heat
- Advanced bioethanol
- Biokerosene

Ghent Technology Campus Faculty of Engineering Technology

Barriers to investments in RE-sources

14

2 Seas Mers Zeeën SOLARISE

and the second state of the second se

SWOT – Solar energy in 2Seas

15

Ghent Technology Campus Faculty of Engineering Technology

Scenarios for PV installations 2018 -2022

IS SOLARPOWER ELINOPE 2018

SWOT 2Seas Solar energy market

 Low(er) prices components Reliable products (warranties) 	S	 (Almost) No PV-panels production Expensive monitoring/control solutions
	0	Т
• Innovations to be exploited: floating PV, Agrovoltaics, PV/T,		 Dependence on (PV-panels) imports Missing strategy to develop market more steadily

SWOT – Solar energy in 2Seas

2Seas – solar legislation/regulations

Barriers for solar energy uptake

- Uncertainty of incentive schemes Investment companies, citizen not sure whether it is worth to invest in solar

- Environmental planning

Specific regulations for rooftop PV systems - eg historic buildings, monuments Envrionmental issues for solar farms – preservation of biodiversity, agriculture

- Lack of integrated climate policy

Eg responsibilities are split amongst different federal, regional and local authorities in Belgium

2Seas – solar legislation/regulations

SWOT – Solar energy in 2Seas

24

24

Source: Lazard (2017)

O SOLARPOWER EUROPE 2018

Solar electricity generation costs in comparison with other renewables

Ghent Technology Campus Faculty of Engineering Technology

Solar energy market in the UK is represented primarily by Photovoltaic (PV) electricity generation. The total installed PV capacity at the end of 2018 Q2 was 13.012 GW. As can be seen from Figure 28 and Table 1, the growth in the installed capacity slowed down sharply in 2016 and went down even further in 2017. The latest data show that the growth has halved in 2018 compared to 2017.

2010

BELGIUM:

- 2018 188 MW newly installed PV capacity mostly
- residential PV systems < 10 kWp under net metering selling energy
- PV systems > 10 kWp green certificates; Flanders urgently needs large solar projects with a capacity of more than 750 KW.
- VAT rate on electricity 21%
- 2017 3.2 TWh through solar energy about 4% of total power demand.
- largest growth in solar demand between 2009 and 2012 green certificate scheme to support solar
- Expected PV power of up to 18 GW by 2040.

2 Seas Mers Zeeën SOLARISE

BELGIUM:

	2017 Numbers
Number of PV systems in	≤ 10 kVA: 459.854 systems
operation in your country (a split	> 10 kVA et ≤ 250 kVA : 7.009 systems
per market segment is interesting/	> 250 kVA : 1.004 systems
2	TOTAL: 467.867

- Many small installations
- Residential/commercial
- No fancy technologies

Ghent Technology Campus

Faculty of Engineering Technology

KU LEUVEN

FRANCE:

	2017		
	Peak Power range	Installations (number)	Power (MW)
Number of PV systems in operation in your country	0 – 3 kW	289 494	779
	3 kW – 9 kW	73 224	467
	9 kW – 36 kW	17 522	438
	36 kW – 100 kW	13 213	1 070
	100 kW – 250 kW	6 <mark>07</mark> 1	1 072
	> 250 kW	1 415	4 219
	Total	400 939	8 044
	Total Off-grid	8	30

Encouraging measures/support schemes:

- Feed-in tariffs (FITs)
- Net metering
- Smart metering
- Green/white certificates

Elements for successful renewable energy support schemes/measures:

- a clear, bankable pricing system
- priority access to grid: clear identification of responsible for connection and incentivized
- clear, simple administrative and planning permission procedures.
- public acceptance/support.

Costs(expenditures) and income PV-installations

Initial costs + O&M + recycling +

- + land purchase (Solar farms)
- + roof reinforcement/renovation

SWOT – Solar energy in 2Seas

32

SOLARISE

Table A2.4. Foresight studies mapping - Energy and environment

CAN	DEU	EU	FIN	GBR	RUS
	Smart grids, overlay- grids, super-grids	Future smart cities		Smart grids	Smart networks, long- distance transfer technologies for electric energy and fuel, new- generation power electronics
Decentralised energy systems	Microenergy harvesting			Microgeneration	New-generation microprocessor devices for use in power engineering
	Electrochemical storage and conversion technologies		Rapidly charging light batteries, supercapacitors	Advanced batteries	Electrical and thermal energy storage
			Wireless power transfer		
Electric and hybrid vehicles	Electric mobility, power- to-liquid technologies for the mobility sector	Post-carbon society, carbon dioxide reuse	Self-driving car	Intelligent low-carbon road vehicles	
Autonomous and semi- autonomous vehicles	Connected mobility, car- to-car-communication, car-to-X-communication, smart mobility	Advanced autonomous systems, future mobility	Automation of passenger vehicle traffic, vactrains, magnetic or superconductor-based levitation		Smart transport and new control systems, systems to increase the environmental neutrality and energy-efficiency of vehicles
	Unconventional flying concepts	Drones	Minisatellites, quadcopters, drones, on-demand personal aviation		Micro-, nano-, and pico-satellites
	Fuel cells			Fuel cells	Fuel cells
		"Hydrogen Society"	Inexpensive storage of hydrogen in nanostructures	Hydrogen	Hydrogen production and safe storage, hydrogen for power generation
		Recycling technologies		Recycling technologies	Recycling technologies
	Energy efficiency measures				Low energy consumption buildings, novel light sources and smart lighting systems
		Carbon dioxide capture and storage		Carbon capture and storage, metal organic frameworks	

PV-modules(panels) 50 % of total system costs

Technology	Drawbacks to future use
Crystalline-silicon	Efficiency, materials
Thin-film	Efficiency, stability, toxicity, lifetime
Concentrating PV	Stability, complexity, high cost
Organic PV	Efficiency, stability, lifetime
Third Generation PV	Efficiency, proof of concept only

34

Replacement costs (failure % in PV-installations)

ost-Vlaanderen

Interreg

ARISE

2 Seas Mers Zeeen

Monitoring

AC Subsystem

DC Subsystem

Modules

Grid

Unknown

Degradation of PV-panels

Ghent Technology Campus Faculty of Engineering Technology

SOLARISE

Ghent Technology Campus Faculty of Engineering Technology

Are these actually **opportunities** not challenges?

Other challenges for the PV/T uptake

How to enhance the reliability of PV/T-systems?

- Early detection of possible PV/T failures
- Increasing PV/T-panels lifetime by better materials/design

PV panels	25-year performance warranty	
T panels	10-year product warranty	Limit
PV/T panels	25-year PV performance warranty 10-year product warranty	

Best warranty durations on the market

Reducing costs (EUR/kWh) means:

- reduce the balance of system costs (system components and installation costs);
- increase the energy yields, stability and lifetime of the system;
- increase the inverter lifetime and reliability of system components;
- not combine modules of different specifications in the same system;
- match the inverters to the modules and load profiles.

*Includes energy management system

Ghent Technology Campus Faculty of Engineering Technology

41

2Seas – existent solar projects, best practices, ...

Obstacles to consumers – households, businesses and industry:

- Lack of appropriate information on costs and consumption, or limited transparency in offers
- Increasing proportion of **network charges/taxes/levies** in average final electricity bill.
- Insufficient competition in many retail markets, a lack of reward for active participation, and difficulties in switching act as disincentives.
- Insufficiently developed markets for residential energy services and demand response
- **Preventing self-generation and self-consumption** reduces potential gains.
- Unequal access to information and high entry barriers for new competitors slow down the adoption of available advanced technologies and practices such as smart metering, smart appliances, distributed energy sources and energy efficiency improvements.

Guidelines for benchmarking and pilots Database with pilots, good practices and benchmarks

Do we (still) need these in 2Seas region?

43

YES because

- Stakeholders are still not aware of existent knowledge/knowhow:Innovations
- Various stakeholders with various backgrounds still co-exist
- Not enough (best practices) examples close to 'your door'

SWOT – Solar energy after Solarise

2 Seas Mers Zeeën SOLARISE

management in succession of the second

Ghent Technology Campus Faculty of Engineering Technology

Guide package

on legislation, market, technologies and best practices

TO BE FINALIZED

by the END of JUNE 2019

Enquires/remarks/suggestions for Output 1 to: emilia.motoasca@kuleuven.be

