

Solar Installations in the SOLARISE project WP4

Hugo de MoorAvans UniversityTiny Maenhout & Ronald de BruijnMiddelburg

Avans University of Applied Sciences

- Grid of the Future Technology and business models
 - Heat and Electricity supply, storage and use
 - E-mobility
- Solar
 - Application of Solar Foils

Close contacts with:

Solliance (Thin-Film) and SEAC (Buildings) (TNO-IMEC-Uni's)

Role in Solarise:

- Observing Partner Supporting Middelburg with background research

Outline

Introduction on WP4

General Considerations for PV in the built Environment

PV Installations in WP4

WP4 Demonstration projects Solar + (Storage)

Objective of Solarise:

Facilitate the large-scale deployment of solar electricity/heat generation

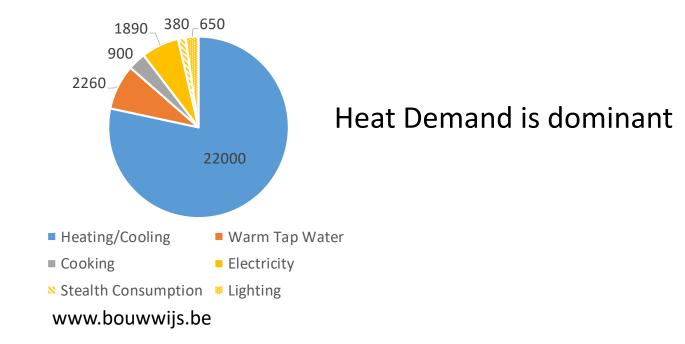
WP4 Demonstrations

- Historical/public buildings
- Low-income Housing
- Solar Farm

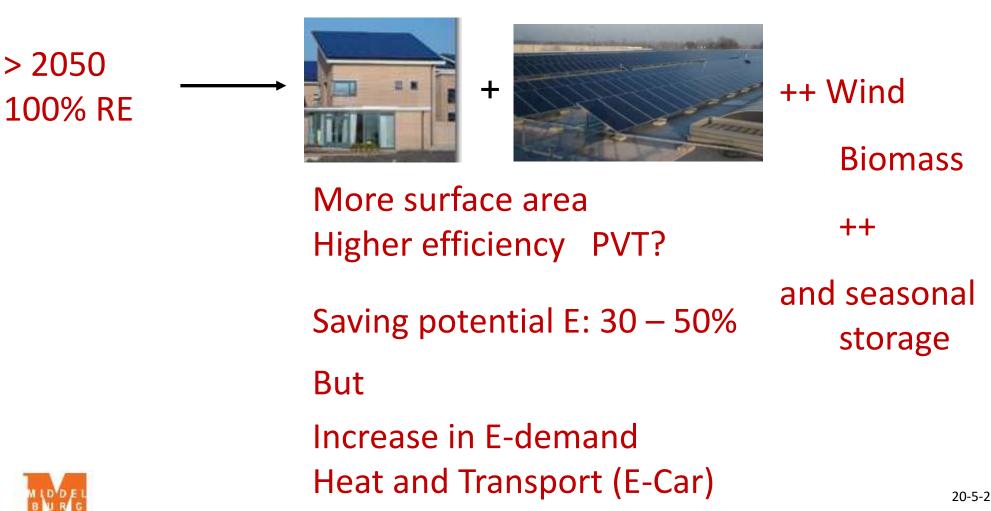
PV on and near Buildings

PV requires considerable surface area

- \Rightarrow Use surfaces already available
 - buildings: roofs, facades
 - road infrastructure: sound barriers, pavement, parking lots
 - land (temporarily) not in use
 - waste dump
 - close to industrial sites
 - water


PV area available

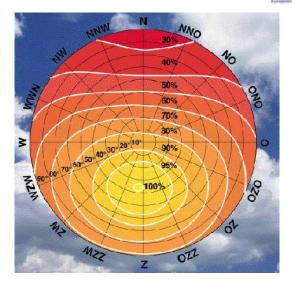
Typical NL Social Housing 5 m width, 10 m deep, 30° roof $\Rightarrow 29 \text{ m}^2$ = 4300 kWh/a 150 kWh/m²

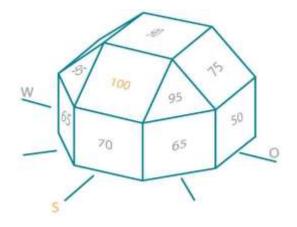

Typical Household 3000-4000 kWh/a



PV area needed

PV on Buildings

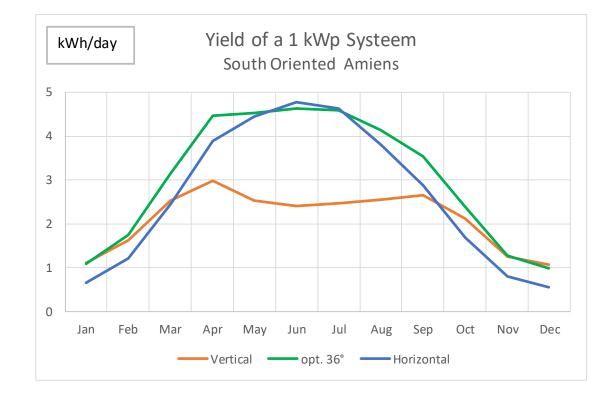



Roof

Facade

Parapet

Sun protection



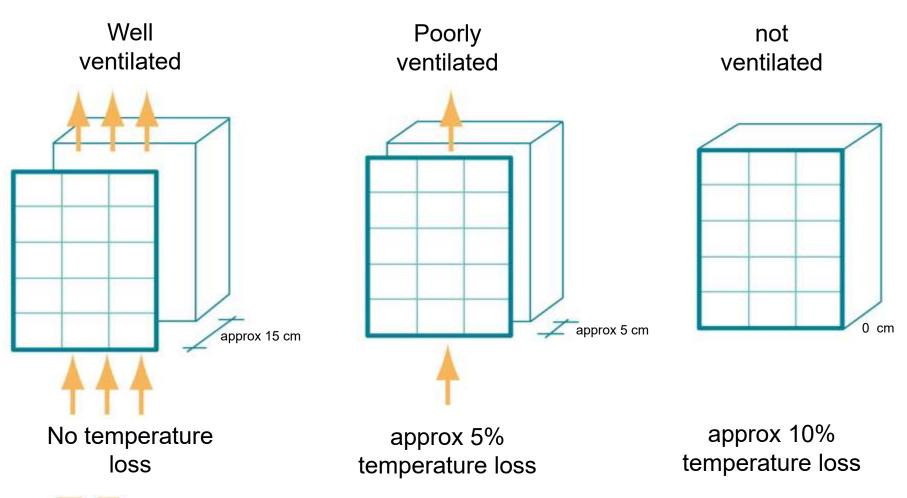
PV Yield

Daily Irradiation	Wh/m2/day		
	Horizontal	Optimal	Vertical
Gent	2970	3420	2400
Amiens	3120	3580	2480
Portsmouth	3220	3800	2690
Heerhugowaard	3000	3510	2490

PV on Buildings BIPV and BAPV

EN 50583-1

- BIPV Building Integrated PV
 Construction product providing a function as defined in the European Construction Product Regulation CPR 305/2011
- BAPV Building Attached PVModules mounted on a building envelopenot fulfilling a function


PV on Buildings BIPV and BAPV

Properties	BIPV	BAPV
Esthetics	++	0
Costs		+
Material Use	0	
Wind	+	-
Rain	-	+
Humidity	-	+
Fire Safety	-	+
Heat		-
Mass Production		+

PV on Buildings Temperature Loss

PV on Buildings

Sloped Roofs

Overhead Glazing

Facade

Flat Roof

PV on Historical Buildings

Invisibility from the streets is often required (Unesco World Heritage) => Flat roof systems, ("invisible" PV on roof tiles, slates)

PV on Historical Buildings

Roof Tiles and slates were PV is hardly visible

PV on Buildings Special Modules

If only esthetical integration is needed => Special modules

Special PV on Buildings

avans

university of applied science

Solarix façade Kuijpers Installatie Helmond PV can also surprise you

PV and road infrastructure

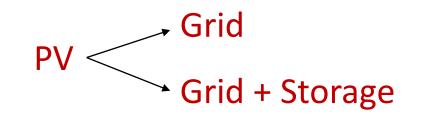
Sound barrier

Solar Road

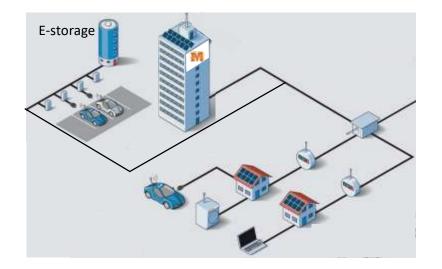
Bus Lane

High Speed Train

PV on "useless" land and water



Zonneberg Waste Dump HH'waard Industrial area Solar on water

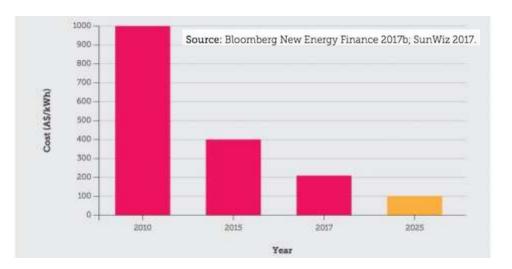


Storage

Conventional: Grid as virtual storage

Future: Low-cost storage to control PV-supply and demand

Storage


Why Storage?

- Needed to stabilize the grid (RE-sources)

- Peak Shaving (local)
- Grid Balancing (Regional-National)
- It becomes affordable

Storage

Cost Reduction !

Home Battery 5 – 15 kWh 0,5-1,5 day

Car Battery 40 kWh V2G

2 Seas Mers Zeeën

SOLARISE

WP4 Installations Fourmies

Approved Designed

2 other pilots to be defined by the feasibility study

Fourmies Louis Aragon elementary school

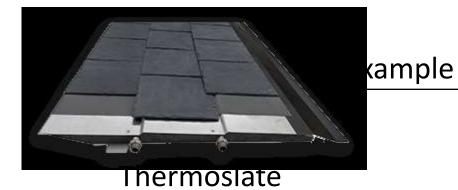
WP4 Installations Fourmies

Fourmies Louis Aragon elementary school

420 m² PV 97 kWp 396 Modules High Quality Mono (Black) 9x18 and 9x26 **Roof Integrated** 85 MWh to the grid **Investor: Municipality** 137 k€ Status: Approved

Status: Approved Start: Jan. 2020 PV Grid Connection: Spring 2020

WP4 Installations Zoersel


Zoersel Village Hal

Historic Pastorium Thermal solar roof tiles 8.7 MWh/year Village Hal new Solar-air absorber 15.6 MWh/year Thermal system connected to ice storage; source for water-water Heat Pump **Investor: Municipality** 110 k€ Status: Budget Approved Start: Oct. 2019 Finished: Nov. 2020 25

WP4 Installations Zoersel

WP4 Installations Brighton Hove

Now:

Solar only feeds the communal (landlord) supply Tenants receive very little direct benefit

Objective:

To give the benefits of solar to tenants and leaseholders within these flats.

Options:

- 1 Offer rooftop generated solar electricity at a 'hyper local' tariff to residents within the block
- 2 Multi-arrays directy going to consumer units in each flat
- 3 Battery storage to maximise communal electricity consumption, reducing service charges.
- 4 PVT Heat and Electricity reduce running costs in seniors accommodation
- 5 Renewable heating utilising solar PV to run
- heat pumps in order to reduce heating costs 27

WP4 Installations Brighton Hove

3 Housing blocks across Brighton & Hove

Total budget k€200 Options appraisal back: May 2019 Pilot models selected: June 2019 Installation completed: Dec 2019

All investment will be retrofitted on blocks of multiple occupancy (i.e. flats or seniors accommodation).

Details will depend on site specific requirements and the pilot proposed.

WP4 Installations Middelburg

Archives of Zeeland (Zeeuws Archief)

500 m2 Roof 60 kWp 50 kWh/year Light weight Black PV panels Batteries for peak shaving 30 kWh Self consumption + neighbouring buildings Total budget k€150 **Budget Approval** 2019 Start of construction 2020 Connection to the grid 2020

WP4 Installations Middelburg

De Helm

De Helm replacement of Slates

Other projects will depend on budget and building permits

- Solar wall
- Cold Façade
- Sound Barrier (Railway station)

All projects will aim at self consumption and charge points for bicycles and cell phones

Solar Farm Heerhugowaard

Heerhugowaard Solar Farm de Vaandel

Investment of Ecorus ≈ 5 M€ not part of Solarise

Thank you for your attention

