

Public Private Partnership

School **Residential development** Community center Green infrastructure

A combination of old and new Rectory with high esthetic value New hall for community services Perfect match for SOLARISE

Renovation roof of the rectory

Safeguard esthetic value Caption of solar energy

Innovative combination

Sun collector Thermoslate Ice buffer system Viessman

thermsslate

VIESMANN

SOLARISE

Viessmann

Ice buffer system

ERIK DEEN Sales- and Project Engineer

© Viessmann Group

Viessmann Belgium BV

Ice Buffer System WHY?

What if:

There is a demand for heating: Optimal use of renewable energy Important cooling load Drilling impossible, not allowed or very difficult (expensive)

A combination of **5 regenerative** energy sources Guarantees a stable source the whole year long

Energy supply to the system

- Solar radiation Solar-air absorber
 - Ambient air Solar-air absorber
- Earth External surface ice buffer

Energy use whithout external energy supply

- Water Palpable heat
- Ice Latent heat / cristallisation heat

Components of the Ice Buffer System / 3 different functional modes

Larger installations: hydraulic diagram

Components of the Ice Buffer System / Solar – air absorber

Solar-air absorber

Components of the Ice Buffer System / Solar – air absorber

somann Group

Components of the Ice Buffer System / Solar – air absorber

Components of the Ice Buffer System / Ice buffer

Components of the Ice Buffer System / Solar – air absorber

1 = freezing point2 = boiling point3 = vapout saturation point

A = ice B = ice + water C = water D = water + vapourE = vapour

Components of the Ice Buffer System / Heatpump

Standard ground /water heatpumps with electronic expansion valve

Monitoring results.

The temperature of the ice buffer stays at 0° constantly from December till March. And still, **about 65%** of the energy is delivered by the solar – air absorbers (green, > 0°C) **Only 35%** of the energy stems from the ice buffer (red, = 0°C)

Design and dimensioning

Ice buffer system Design and dimensioning

- Dimensioning of components in function of heating and cooling load.
- Set the control as intelligently as possible:
 - When do we get heat from ice buffer?
 - Work to ideal temperature at the end of winter to be able to cool sufficiently in summer
 - Where do I use / store the captured ambient heat: source WP / ice buffer / CV buffer?
 - Monitoring and adjustment

SCHNEPF - DAS KONZEPT

Jahreszyklus Eisspeicher – Prognose 2014

Jahreszyklus Eisspeicher – tatsächlicher Verlauf 2014

Viesmann

Thanks for your attention!