

European Regional Development Fund

Methodologies to aid decision making in solar feasibility studies

Professor Victor Becerra University of Portsmouth School of Energy and Electronic Engineering victor.becerra@port.ac.uk

19 October 2020

Outline

- Introduction to feasibility studies
- Main aspects of feasibility in solar energy projects
- The special case of public buildings
- Methodologies to aid decision making in solar feasibility studies
- Further remarks

Feasibility studies

- A feasibility study is a set of investigations that establishes whether a particular project meets the conditions to be implemented
- It makes recommendations on whether or not the project should go ahead, and under what circumstances it should go ahead.

Feasibility studies

The objectives of the feasibility studies include typically:

- \checkmark give focus to the project;
- ✓ provide valuable information for a "go" / "no go" decision
- ✓ narrow the alternatives;
- ✓ increase the probabilities of contributing to the success by identifying weaknesses at an early stage;
- ✓ Enhance the success rate by evaluating multiple alternatives
- ✓ consider the life cycle and impact of the project

Importance of feasibility studies

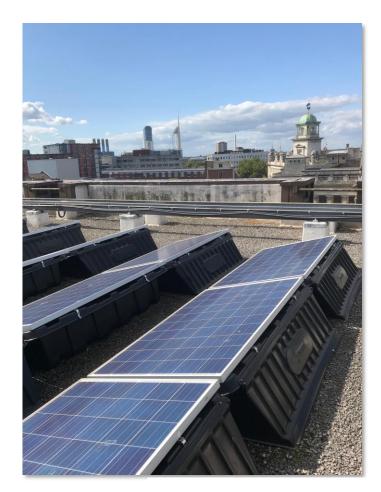
- Feasibility studies offers the opportunity to "get it right" before committing time, money and resources to an idea that may not work in the way that was originally intended
- They help avoid additional costs to correct flaws and remove limitations that could have been identified earlier
- They may also help identify new possibilities, opportunities and solutions you might never have otherwise considered

https://solarpanelpower.ca/how-solarpower-works-canada/attachment/roofcollapse-solar-power/

Main aspects of feasibility in solar energy projects

Typically, a solar feasibility study includes the following major aspects:

- Technical
- Financial
- Environmental
- Social / Legal



Technical aspects

- Prediction of the electricity production capacity of the solar plant
- The optimum location and orientation of a solar array
- Surveys for open terrain, roof based and building/roof integrated systems
- Solar panel mounting options

Technical aspects

- Local shading considerations in relation to nearby structures
- Assess the need for any electrical, roof, ground or any other works
- Assess any potential on-site hazards and risks
- Identify any site access restrictions
- Identify any potential grid connection restrictions

https://blog.aurorasolar.com/shading-losses-for-pvsystems-and-techniques-to-mitigate-them/

Technical aspects

- Includes key indicators, such as efficiency, warranty terms, degradation, life cycle, maintenance requirements, for key items of equipment including
 - \circ Solar panels
 - \circ Batteries
 - \circ Inverters
 - Solar collectors

https://thepowerstore.co.za/products/axpert-ii-5000va-5000w-solar-inverter-4000w-mppt-220v-48vdc-pf1-120v-450v-mppt

Financial aspects

- Financing of a commercial solar project is possible when the plant is highly likely to generate enough revenue to pay for debt, costs and produce an acceptable return for the equity invested
- Decision to proceed with the development of a commercial solar energy project depends heavily on the financial viability of the project

https://www.philips.ac.cy/department/accounting_finance/

Financial aspects

- The requirements for return on investment may be lower or nonexistent for **public** or **non-profit** organisations, such as local councils and universities
- Moreover, in some cases, a negative return on investment can be acceptable if the principal aim of the project is different from generating profits (e.g. in the case of demonstrators)

Financial aspects - revenues

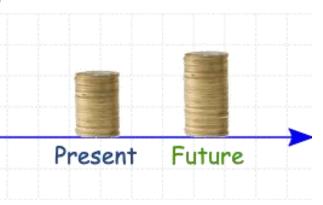
- Annual **energy yield** directly drives the **revenue** line in the cash flow model.
- Accurate energy yield predictions are extremely important in large scale projects.
- The uncertainty of the estimated energy yield is also very important, as the annual energy yield directly affects the annual revenue and therefore project viability.

https://www.information-age.com/smart-metresvulnerable-cyber-attacks-123470837/

Financial aspects - revenues

- The key revenue stream for most solar power plants is the tariff paid for each kWh of electricity generated.
- **Power Purchase Agreements** (PPAs) can be signed with a commercial buyer
- Sometimes there are other sources of revenue, such as renewable energy credits, tax credits, etc.
- The permanency of such incentives should be assessed carefully, as they are often modified or eliminated
- Tariffs and incentives vary from country to country.

https://www.caplor.co.uk/solar-pv/feed-in-tariff/



Financial aspects – key indicators

Key indicators often used to assess the financial viability of a solar project include:

- Net present value (NPV)
- Internal rate of return (IRR)
- Payback period (PP)
- Cash Flow Available for Debt Service (CFADS)
- Debt Service Coverage Ratio (DSCR)
- Loan Life Coverage Ratio (LLCR)
- Levelised Cost of Electricity (LCOE)

Environmental aspects

- The potential environmental impacts associated with solar power typically include
 - Land use and habitat loss,
 - Water use,
 - Manufacturing (use of chemicals, carbon use),
 - Landscape and visual impacts, and
 - Global warming emissions
- These can vary widely depending on the technology used, the location, the scale and other aspects of the project.

https://parkinsurance.co.uk/solar-farm-costsetting-up/environmental-impact-solar-panels/

Environmental aspects – habitat loss

- When a **habitat** is destroyed, the local organisms decline or disappear.
- Larger utility-scale solar facilities can bring about worries about land degradation and habitat loss
- Total land area requirement depends on the technology, the topography, and the intensity of the solar resource at the location.
- Habitat loss impacts from utility-scale solar systems can be minimised by locating them at lower-quality locations, such as former landfills.

https://www.ledwatcher.com/environmental-effectssolar-farms/

Life cycle environmental impact of solar energy systems

- Solar energy systems provide significant environmental benefits in comparison to the conventional energy sources
- Sometimes however, their wide scale deployment has potential negative environmental implications
- Perhaps the simplest measure is to consider the global warming emissions associated to the solar installation.

http://www.bbc.co.uk/learningenglish/features/6-minuteenglish/ep-160915

Environmental aspects – landscape and visual impacts

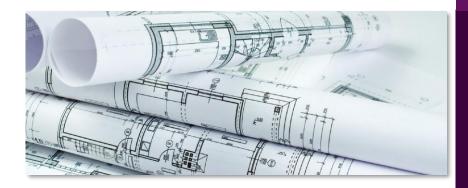
- These can include the visibility of the solar panels within the wider landscape and surrounding communities.
- Mitigation measures to reduce impacts can include
 - consideration of layout, size and scale during the design process
 - landscaping and planting to screen the modules.
- Glint and glare should also be considered in the environmental assessment process.

https://www.solarpowerworldonline.com/2016/10/software-letsinstallers-assess-solar-glare-sensitive-areas/

Reduction in carbon emissions

- The reduction in carbon emissions because of the substitution of fossil fuel generation that a solar installation enables has a positive impact in the environment.
- A simple initial calculation assumes that all solar electricity directly replaces electricity produced by large power stations.
- A common way uses the 'average grid carbon intensity', which is the average amount of CO₂ emitted for each kWh of electricity produced for the power grid.
- Estimated at 445g CO₂ in 2013 for the UK

http://www.ox.ac.uk/news/2015-03-18world%E2%80%99s-most-polluting-coal-plants-areidentified



Legal and social aspects

Legal aspects

Permits and licensing can be a lengthy process involving multiple agencies in the central and local governments. Depending on the characteristics of the project, some the following may be needed:

- Land lease agreement
- Site access permit
- Planning permission
- Environmental permit
- Grid connection agreement
- Operator/generation license

https://www.allcottassociates.co.uk/blog/i-need-planning-permission/

Legal and social aspects

Impacts on cultural heritage

- These can include effects on the setting of designated heritage sites or direct impacts on underground archaeological deposits
- Field surveys may need to be carried out prior to construction
- Mitigation measures can include careful site layout and design to avoid areas of cultural heritage or archaeological value

http://www.buildingconservation.com/articles/churchsolar/church-solar.htm

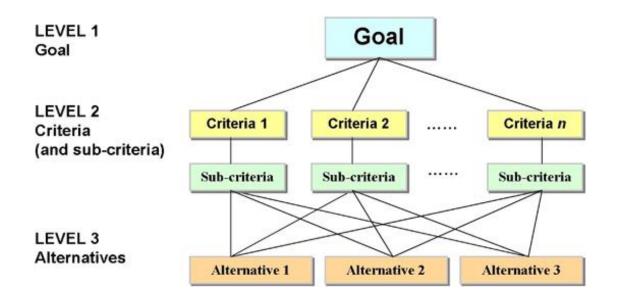
Solar feasibility studies in public buildings

- Installation of solar energy systems in public buildings helps reduce energy costs and carbon footprint and to promote use of solar energy to the general public
- There is a need to conduct feasibility studies to target the best opportunities for solar installations in public buildings as resources are limited
- In the case of public buildings, feasibility studies analyse energy potential, risks, and investment requirements, legal and regulatory aspects, cost/benefit analysis, required work, equipment, and potential CO₂ reduction

Solar installation at Portsmouth City Council

Key benefits of solar technologies in public buildings

- Government branches and other public institutions have long time horizons and very low costs of capital.
- Moreover, they may be subject to more stringent energy performance standards than the private sector, propelling the need for solar energy.
- Adequate battery storage makes a PV system selfsustainable and resilient to time of use.
- However, some public buildings are meant for more daytime energy usage and this encourages self-consumption of solar energy


Solar installation at the University of Portsmouth

Challenges – hybrid systems in public buildings

- Public buildings without heritage value have less restrictions and advanced solar technologies like PVT or hybrid energy systems can be considered during the construction phase or refurbishment phase.
- This will increase the complexity of the feasibility study due to distinct energy sources (heat pumps + solar PV) or types (e.g. electricity and heat).
- One way of dealing with this complexity is the use of Multi Criteria Decision Analysis (MCDA) which is a family of tools to aid decision making in complex problems where a variety of objectives are involved.
- MCDA allows breaking the problem into more manageable pieces to allow data and judgements to focus on the pieces, and then of reassembling the pieces to present a coherent overall picture to decision-makers.

- Solar feasibility studies consider a range of criteria, including for example, technical, financial, environmental as well as legal and social aspects.
- Methods for decision making may vary, but in general the decision making process can be seen as a multi-criteria decision analysis problem.

- To effectively assess the feasibility of the solar installation project, a possible approach is to use a **decision matrix**.
- This type of evaluation helps to inform the feasibility study by **weighting and scoring** the various elements which are relevant to the project and organisation.
- As part of one of the work packages in SOLARISE, we developed a methodology to aid decision making in solar feasibility studies.

Criteria	Weight (0– 5)	Score (1 – 10)	Weighted Score
Technical aspects	A	т	A×T
Financial aspects	В	E	B×E
Environmental aspects	С	E	C×E
Social and legal aspects	D	S	D×S
Total score (percentage)	-	-	10(A×T+ B×E +C×E +D×S)/(A+B+C+D)

- The methodology allows the evaluation of different sub-criteria for each major criterion, resulting in a numerical score for each major criterion.
- Particular sub-criteria are classified as essential/non-essential
- Infeasibility of essential sub-criteria results in infeasibility of the alternative being considered.

Example of data entry for environmental sub-criteria

Sub-criteria	Value (if applicable)	Units (if applicable)	Essential?	Score (0 to 10), 0='not applicable'
Habitat loss		-	Ν	0
Ground concurrency			Ν	0
Water use		gal/MWh	N	0
Life cycle environmental impact of solar energy systems	4802.5	kg CO2 eq	Y	7
Lanscape and visual impacts	-	-	N	0
Life-cycle carbon emission reduction	41650	kg CO ₂	Y	9

- The user selects the weights for each criterion and the pass score for sub-criteria and for overall feasibility
- An **overall score** for each alternative is calculated as a weighted sum of the scores for each criterion
- This allows to rank different feasible alternatives for the same project
- This ranking can be used by the analyst to **aid decision making**
- The definition of sub-criteria can be adapted and particular subcriteria can be added or removed according to the user's preferences

Case description:	20 kW rooftop solar installation		
PASS SCORE FOR ESSENTIAL SUB-CRITERIA (1-10)		5	
PASS WEIGHTED SCORE FOR FEASIBILITY (%)		50	

Criteria	Weight (1 to 5)	Score (1 to 10)	Total Average Weighted Score
Technical aspects	4	7.13	28.50
Financial aspects	5	7.25	36.25
Environmental aspects	4	7.33	29.33
Social and legal aspects	4	6.00	24.00
			69.46

Key for criteria weighs		Key for scoring	
0	Not important/not relevant	0	Not relevant
1	Very low importance	1	Not satisfied at all
2	Low importance	2	Very poor
3	Medium importance	3	Poor
4	High importance	4	Below satisfactory
5	Very high importance	5	Satisfactory
		6	Above satisfactory
		7	Good
		8	Very good
		9	Excellent

10

FINAL RESULT	THE PROJECT OPTION IS FEASIBLE
--------------	--------------------------------

Outstanding

Final remarks

- We have had a look at solar feasibility studies, their objectives and importance.
- We considered key aspects of solar feasibility studies, including technical, financial, environmental, social and legal aspects.
- We also had a brief look at the special case of public buildings
- We discussed a methodology that has been developed under SOLARISE as an aid in the assessment feasibility of solar projects, to compare alternatives, and to make decisions.

UNIVERSITYOF PORTSMOUTH

Thank you

European Regional Development Fund