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Abstract

This paper presents a range of methods to improve the accuracy of equation-based thermal models of PV
modules at second-to-minute timescales. An RC-equivalent conceptual model for PV modules is presented,
where wind effects are captured. A method is shown to determine the thermal time constant τ of PV
modules from measured data and module material properties, and τ is subsequently used to make static
thermal models dynamic by applying the Exponential Weighted Mean (EWM) approach to irradiance and
wind signals. On average, τ is (6.3± 1.0)min for fixed-mount PV systems. Based on this conceptual model,
the Filter- EWM - Mean Bias Error correction (FEM) methodology is developed. Two thermal models,
WM1 and WM2, are proposed and compared against the models of Ross, Sandia, and Faiman on twenty-
four datasets of fifteen sites, with time resolutions ranging from 1 s to 1 h, the majority of these at 1min
resolution. The FEM methodology is shown to reduce model errors (RMSE and MAE) on average for all
sites and models versus the standard steady-state equivalent by −1.1K and −0.75K respectively.
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1. Introduction

In light of the continued and increasing
deployment of PV systems worldwide and their
increasing importance to power grids [1, 2], finally
exceeding the cumulative 1TW mark in 2022 [3],5

the demand for more accurate power and energy
forecasts by multiple stakeholders will increase
at pace. In the design phase, PV system
performance models in commercial software can
(quite) accurately predict the power output of10

the system, provided that the user has selected
the right components, data sources and made
some important assumptions. Once the PV
system has been financed and built, the physical
components are expected to remain in place for15

the technical or financial lifetime of the plant.

∗Corresponding author
Email addresses: bert.herteleer@kuleuven.be (Bert

Herteleer), anastasios.kladas@kuleuven.be (Anastasios
Kladas), gofran.chowdhury@kuleuven.be (Gofran
Chowdhury), francky.catthoor@imec.be (Francky
Catthoor), jan.cappelle@kuleuven.be (Jan Cappelle)

It is only then that the true interaction of
the PV system components (modules, inverters,
and mounting system) with the local weather
and geographic conditions happens, including20

occurrences of rapidly changing irradiance and wind
speed. Significant deviations between modelled
and measured data have been observed among
expert practitioners using the same software [4,
5], highlighting the importance of calibrating25

or re-calculating system model coefficients from
measured data.

The contractual and practical consequences of
this are that stakeholders are much better served by
having the most accurate model of a system at their30

disposal at the fastest practical time resolution,
rather than (only) a contractual model whose input
parameters and time resolution are fixed (and
perhaps too slow). One such component of the
overall system is the thermal model, for which35

this paper investigates methods to achieve high
accuracy at reasonable complexity, particularly at
timescales ranging from seconds to minutes.

This paper will show that any explicit equation-
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based thermal model can be transformed from40

static to dynamic through the use of the
exponential weighted mean (EWM) approach,
while maintaining or improving that model’s error
metrics as time steps are shortened from hours
to minutes or seconds. This gives a significant45

improvement versus known examples from the
literature [6]. While the methods presented in
this work can be used independently, their power
is magnified when combined. The methods to
improve existing and new thermal models and their50

understanding use: improved filtering of data, with
the MBE as a proxy for steady-state radiation
losses, and making these models dynamic through
the use of the time constant τ for the EWM
methodology, which are derived from the RC-55

equivalent thermal model of a PV module. The aim
is to keep the resulting model complexity as low as
possible, while obtaining high model accuracy. This
is achieved by:

• Using RC equivalent networks for conceptual60

understanding. This can serve to improve
accuracy of backsheet-to-cell temperature
corrections and understanding of wind
direction effects;

• More robust filtering requirements for data,65

inspired by the RC conceptual model, resulting
in more reliable coefficient determination;

• The determination of the equivalent thermal
time constant τ of PV modules; and,

• The use of τ for the exponential weighted70

mean (EWM) for irradiance and wind speed
signals, making previously steady state models
dynamic.

Ideal equation-based (thermal) models should:

• Demonstrate high accuracy: low root mean75

square error (RMSE), mean absolute error
(MAE) and mean bias error (MBE) values;

• Have as few coefficients as possible for
simplicity; and,

• Work with industry-standard signals (plane-of-80

array irradiance G, the ambient temperature
Ta, module temperature Tm, and wind speed
WS) for wide applicability.

This paper is organised as follows: a few
noteworthy approaches for dynamic thermal models85

from the literature are discussed, highlighting
strengths and weaknesses. The data sources
employed are presented. The RC-equivalent
thermal model of a PV module is then presented,
which is used for conceptual understanding, to90

help determine the thermal time constant τ , and
to select the optimal filtering conditions to find
model coefficients. Finding the optimal model
coefficients for thermal models is best achieved
via multiple linear regressions instead of a single95

linear regression. With the thermal time constant
τ known, it is then possible to calculate the
Exponential Weighted Mean (EWM) irradiance
and wind speed signals, and use these to make the
(previously) steady-state thermal model dynamic.100

By correcting the Mean Bias Error (MBE) of
the testing dataset (using it as a fixed radiation
loss component), the thermal models are further
improved. The filtering - EWM - MBE correction
(FEM) methodology is applied on five thermal105

models and 24 datasets of varying time resolution:
two thermal model variants introduced here (WM1
and WM2), which are compared against those of
Ross [7], King et al [8] and Faiman [9]. The thermal
models are then evaluated along various dimensions110

and timescales, contextualising the model results
against measured data.

Nomenclature

A Surface area [m2].

L Material thickness [m].115

To Over-temperature versus ambient, i.e.
∆Tmodule−ambient [K].

TBS Backsheet temperature [◦C].

Ta Ambient temperature [◦C].

Tcell Cell temperature [◦C].120

Tm Module temperature (cell or backsheet) [◦C].

Tsky Sky temperature [K].

λ Material thermal conductivity [W/(m ·K)].

ρ Material density [kg/m3] .

τ Thermal time constant [s].125

τe Electrical time constant [s].

cp Material specific heat capacity [J/(kg ·K)] .
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cM Module equivalent capacitance per unit area
[J/(K ·m2

)] .

ceq Total equivalent capacitance per unit area, or130

C-value [J/(K ·m2
)] .

cfilm Air film equivalent capacitance per unit area

[J/(K ·m2
)] .

k Ross coefficient [K/(W/m2)] .

kW Irradiance convection coefficient, used for135

WM2 [K ·m · s/W] .

rM Module equivalent resistance per unit area
[K/(W/m2)] .

req Total equivalent resistance per unit area, or R-
value [K/(W/m2)] .140

rfilm Air film equivalent resistance per unit area
[K/(W/m2)] .

2. Literature review

While multiple authors have presented thermal
models, see e.g. the review by Skoplaki and145

Palyvos [10], three thermal models have seen
extensive uptake in the literature, namely those
by Ross (Equation (2)) [7], King et al [8] (also
known as the Sandia model: Equation (3)) and
Faiman [9] (Equation (4)). In practice, Faiman’s150

model is typically used in its simplified form
(Equation (5)) [11], as determining the optical
efficiency ηo requires additional effort, while the
electrical efficiency ηe varies as a function of
the module’s temperature. For notational and155

conceptual simplicity, and recognising that most
models incorporate the ambient temperature Ta,
the over-temperature To defined by Kurnik et al [12]
and given in Equation (1) will be used throughout
this work.160

To = Tm − Ta (1)

To,Ross = k ·G (2)

To,King =G · ea+b·WS (3)

To,Faiman,original =
G

U0

ηo−ηe
+ U1

ηo−ηe
·WS

(4)

To,Faiman =
G

U0 + U1 ·WS
(5)
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Figure 1: Motivation for examining the models by Ross,
Sandia, and Faiman. The Ross (irradiance) coefficient
k reflects irradiance impacts (left subplot), whereas the
Faiman and Sandia models approximate wind cooling (right
subplot) quite well, although a divergence at low and high
wind speeds is noticeable. Data filters are given for each
subplot; data resampled to 5min averages.

The model by Ross has been very popular due
to its simplicity since it was first introduced in
1976, with a chief drawback that wind effects are
not considered. By contrast, the thermal models
of King et al and Faiman result in significantly165

improved error metrics when wind speed data
is available. These three thermal models were
developed as steady-state models, using data
of 5min resolution or slower, and implicitly or
explicitly excluded dynamic conditions (i.e. rapidly170

changing irradiance or wind speed) to determine the
model coefficients.

To model the temperature of a PV module
from an energy balance perspective, radiation,
convection (free and forced) and conduction as well175

as electrical power removal should be considered;
see e.g. [13]. In practice, most explicit
(empirical) thermal models disregard (variable)
radiation thermal losses, as well as the electrical
power removed from the module. Most empirical180

or data-driven thermal models therefore consider a
residual effect, i.e. the temperature of a module
after radiation and electrical power fluxes have
been removed.

Physics-based approaches typically focus on185

coupled thermal-electrical models such as those
by Tina [14], Goverde et al [15], and Gu et
al [16]. These models arrive at a module
temperature through a bottom-up physics-based
approach, with the disadvantage of computational190

cost and complexity for wide implementation.
These are better suited for attribution, i.e. to
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answer questions such as “how large is the impact
of radiation/convection/conduction/... on the
module temperature?”. Importantly, the (relative)195

attribution differs significantly from bottom-up
models to empirical equation-based models, in
that coefficients describing the same effect (e.g.
irradiance heating or convection cooling) often are
quite different.200

In the context of dynamic thermal models, the
thermal time constant τ is of importance, as
discussed and determined by Armstrong and Hurley
[17]. The thermal time constant is taken to be the
thermal equivalent of the time constant observed205

in electrical RC networks, exhibiting the same
behaviour to a change in the driving force. For a
PV module, a step change in the irradiance results
in a time-delayed temperature change, where the
PV module temperature reaches 63% of the total210

temperature change after one times τ , and 95%
after three times τ . Importantly, Armstrong
and Hurley give a detailed RC equivalent thermal
network for a PV module, which shows the cell
as the thermal centre of the module, connected in215

parallel to the front surface and back surface of the
module via series-RC networks, each representing
a module layer, such as glass, or the module
backsheet. Armstrong and Hurley determine τ
from experimental data of a single module in220

outdoor conditions, and compare this to their
physics-based thermal model. They show that τ
declines for increasing wind speeds, from 383 s at
0.77m/s wind speed to 234 s at 5.76m/s [17].
Wind tunnel tests [18, 19] demonstrate that PV225

modules also show a time-delayed temperature lag
when the wind tunnel is activated or turned off,
similar to irradiance step changes.
Lobera and Valkealahti [20] developed a dynamic

thermal model from an energy balance approach,230

which they tested using 1 s data over three
months, achieving RMSE values of 1.12K to 1.61K,
depending on the time period considered in the
dataset. In their work, the equation for the
module temperature needs to be solved using235

Euler’s method. While the authors claim it not
to be computationally intensive, extensive work on
finding the optimal coefficients from measured data
was required.
A noteworthy equation-based dynamic model for240

PV module temperatures is by Veldhuis et al [21],
which uses the exponential moving average of the
module temperature through a recursive calculation
on 1min data. It achieved average RMSE values of

1.6K for the modules tested in two locations, and245

gives a temperature lag (i.e. thermal time constant
τ) of 17min. The model consists of six parameters,
which require irradiance (G), relative humidity
(RH), wind speed (WS), module temperature
(Tm) and ambient temperature (Ta) signals. The250

parameters are determined by minimising RMSE
for a range of values, a process which hinders
easy application for practical purposes. Peters
and Nobre [22] apply this model for a floating PV
system (RMSE 2.3K, τ = 7min) and compare this255

to rooftop PV (RMSE 1.6K, τ = 35min).
Prilliman et al [23] developed a transient

weighted moving-average (or exponential weighted
mean) thermal model. The approach by Prilliman
et al allows static models to become dynamic, where260

the steady-state thermal model can be chosen,
demonstrated using the Sandia temperature model
[8], and multiplies this with a combined exponential
weighting coefficient P, which itself depends on
four coefficients a0 to a3. These coefficients can265

be determined from finite element analysis (FEA),
which adds complexity for routine implementation.
A fixed value for τ of 20min is employed for the
calculation of the dynamic module temperature.
For four sites at 1min time resolution, RMSE values270

2.0K to 2.9K are achieved, with mean bias error
(MBE) results of ±0.8K or smaller.
Barry et al [24] proposed an extended form

of Faiman’s model [9] as part of their dynamic
modelling approach on 1min data, using a275

coefficient u3 to multiply against the sky-ambient
temperature difference. The determination of u3

itself is not clear, yet it appears to depend on the
sky temperature Tsky, which is obtained through
measured data, using long-wave downward welling280

irradiance measured by a pyrgeometer. They show
that the radiative cooling of PV modules can be
linearised and used in the form of u3·∆Tsky−ambient.
They determine thermal time constants for the
three systems considered (System 1, 2A, and 2B)285

at 500 s to 600 s, and achieve RMSE values for the
three months of data as 1.35K, 1.20K and 2.18K
respectively [24].

While the aforementioned approaches permit
the respective authors to obtain dynamic thermal290

models with significantly improved RMSE values
at ∼1min time resolution, they often require
non-standard measurement data, computationally
intensive methods, or do not show a simple
yet robust methodology to obtain the required295

coefficients. It is not clear how to apply these
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methods at different time resolutions (e.g. 1 s - 10 s
- 1min), and how the results vary accordingly.

3. Datasets and time resolutions

Table 1 gives an overview of the data used300

in this work. This data comes from four main
sources: KUL own measured data [27, 29], open
data from NIST PV arrays [30], US DOE Regional
Test Center and NREL data shared via [31], and
data used by Barry et al for their dynamic thermal305

model [24, 32]. Of these, the KUL rooftop array
and the NIST datasets stand out, as these have sub-
minute time recording resolution data. These two
sites (KUL rooftop and NIST Ground RTD 4) are
then used to validate model quality at additional310

time resolutions (1min, 5min, 15min, and 1 hour
averaged values).

The data treatment applied in this work to
determine coefficients and testing the models is to
split the dataset into a training dataset (weekdays)315

and testing dataset (weekend days). In this
way, both the training and testing datasets see
the same range of seasons. The resulting Key
Performance Indicators (KPIs): RMSE, MAE,
MBE are reported here for the testing dataset.320

The following data selection filters are employed:

• All data:

0m/s ≤ WS ≤ 25m/s;

−20 ◦C ≤ Ta ≤ 50 ◦C;

• Night-time data (for module bias325

determination): To when G < 20W/m2;

−20 ◦C ≤ Tm ≤ 80 ◦C

• Daytime values: G > 20W/m2; and,

0 ◦C ≤ Tm ≤ 80 ◦C (avoid snow-covered
modules).330

4. Methodology and theoretical approach

Fundamentally, the (residual) RC-equivalent
thermal network of a PV module shown in Figure 2
is used as a starting point, similar to Armstrong et
al [17], to re-evaluate and re-examine the equation-335

based thermal model “families” of Ross, King et al
and Faiman.
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Figure 2: Conceptual RC model with simplified module cross
section (not to scale). The ambient temperature and the
wind speed on the front and back of the module may differ.
The equivalent air films are in series to the glass or backsheet
for convective heat transfer; the air film itself can be seen as
composed of multiple air films in parallel, depending on wind
speed.

4.1. Theoretical approach and conceptual RC model

From electrical network theory, the dynamic
behaviour of series-connected RC networks subject340

to step changes and the associated electric time
constant τel is well understood: when the system
experiences a step change (opening of a switch,
or closing), the voltage change over the resistor
reaches 63%, 95% and 99% of the final value345

after the time equal to one, three or five time
constant(s) τel respectively. Conventionally, three
to five time constants is taken as the time for
an RC system to reach steady state. In such
systems, if the voltage, time taken and resistance350

R are known, the value of the capacitor (C) can
be deduced. Repeated opening and closing of
a switch will modify the voltage, which can be
calculated as the sum of the voltage changes for
each time step. Similarly, PV modules and systems355

are subjected to a sequence of irradiance and wind
speed step changes of varying magnitude, which
interact with the PV module and the mounting
methods, thereby affecting the network equivalent
thermal resistance and capacitance values. The360

module temperature evolves per time step, starting
from the temperature attained in the previous time
step. Such a sequence of step changes of irradiance
and wind speed is mathematically identical to
using the exponential weighted mean (EWM) of365

those signals, with (near-) universal applicability
to other explicit equation-based thermal models of
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Table 1: Locations, data sources and key mounting characteristics of arrays used for thermal models. All sites used have
plane-of-the-array irradiance data, Ta, Tm (typically backsheet), and wind speed data, with very few having relative humidity
and wind direction. More detailed system descriptions and metadata can be found in the cited references.

Organisation &
site name

Location Data used Time
stepe

Mounting, tilt
& azimutha

Module
sensor(s)d

Ref

KUL TC Ghent
Rooftop

Ghent, Belgium 2015/05-2016/03 1 s Flat roof 18◦

S
Cell & BS,
PV052-5x4

[27, 29]

KUL AgriPV Dendermonde,
Belgium

2021/05-2022/03 60 s E-W ±50◦

HAX
Front glass,
RTD

[33]

NIST Ground Maryland, USA 2016 Jan-Dec 10 s Ground 20◦ S BS RTD4 [30, 34]
NIST Ground Maryland, USA 2016 Jan-Dec 10 s Ground 20◦ S BS RTD8 [30, 34]
NIST Canopy W Maryland, USA 2016 Jan-Dec 10 s Raised 5◦ W BS RTD4 [30, 34]
NIST Canopy E Maryland, USA 2016 Jan-Dec 10 s Raised 5◦ E BS RTD4 [30, 34]
DOE c10hov6 New Mexico, USA 2016 Jan-Dec 60 s Ground 35◦ S Backsheet [31]
DOE t3pg1sv New Mexico, USA 2016 Jan-Dec 60 s Ground 35◦ S Backsheet [31]
DOE luemkoy Vermont, USA 2017/08-2018/05 60 s Ground 35◦ S Backsheet [31]
DOE lwcb907 Vermont, USA 2017/08-2018/05 60 s Ground 35◦ S Backsheet [31]
DOE wca0c5m Florida, USA 2016 Jan-Dec 60 s Ground 30◦ S Backsheet [31]
DOE z0aygry Florida, USA 2016 Jan-Dec 60 s Ground 30◦ S Backsheet [31]
NREL Sanyo Colorado, USA 2016 Jan-Dec 60 s Ground 40◦ S BS #2 [31]
H. U.c Syst 1 Germany 2018 Sep-Oct 60 s Ground Backsheet [32]
H. U.c Syst 2A Germany 2018 Sep-Oct 60 s Ground Backsheet [32]
H. U.c Syst 2B Germany 2019 Jul-Aug 60 s Sloped roof Backsheet [32]
a Angle not stated: Not available, not stated, or unknown. Raised = parking canopy
b HAX: horizontal 1-axis tracker
c H.U.: Heidelberg University
d C = cell, BS = backsheet. RTD = Resistance temperature detector. Sensor name or number noted if multiple sensors
available in dataset. 5x4 = Row 5, column 4 counting from top left, viewed from front (=centre cell of module).

e Recording resolution as stored in the dataset. Some measured at 1 s resolution, but stored data at 10 s or 1min averages.

PV modules and systems, making those models
dynamic, rather than static, as will be shown in
Section 4.5.370

The RC conceptual model in Figure 2 shows a
“standard” PV module, with heat and electrical
power generation within the cells. If the cells
are suitably connected to an external electrical
load, electrical power can be near-instantly removed375

from the module e.g. via an inverter. Radiative
heat losses are seen as constant, and also are fast,
compared to the module’s thermal time constant.
The residual power is then dissipated towards the
front and back surfaces through a series of RC380

networks; the front and back are thus in parallel
to each other. The front and back parallel RC-
networks can then be reduced to a single equivalent
series RC network using network theory. In
contrast to the model by Armstrong and Hurley385

[17], the air film on back and front of the module is
an additional RC-equivalent network in series with
each surface. Each (equivalent) air film can be

seen as being composed of one or more air films
in parallel to each other. The equivalent air film is390

impacted by the wind speed on that surface:

• At high wind speeds, the air film at the
surface(s) of the module can be refreshed more
often, reducing its equivalent thickness L. The
equivalent air film resistance per unit area395

rfilm,eq is then minimal, while the air film
capacitances per unit area add up, increasing
cfilm,eq. For WS ≈ ∞, rfilm ≈ 0, cfilm ≈
cfilm,max.

• For near-zero wind speeds, the equivalent400

values of rfilm,eq and cfilm,eq stem from the
reduced number of air films in parallel: this
increases rfilm,eq, while it reduces cfilm,eq. For
WS ≈ 0, rfilm,eq ≈ rfilm,max, cfilm,eq ≈
cfilm,min.405

While the relative humidity affects the thermal
capacity of air and therefore cfilm,eq, it is not (yet)
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routinely measured for many PV systems. Given
the lack of this data within the available datasets
used here (see Table 1), the impact of the relative410

humidity is therefore disregarded in this work.
The equivalent thermal resistance per unit area

or R-value req, equivalent thermal resistance Req,
thermal capacitance per unit area or C-value ceq,
thermal capacitance Ceq, and overall equivalent415

thermal time constant τ are defined as:

Req =
L

λ ·A

[
K

W

]
(6)

req = Req ·A =
L

λ ·�A
·�A =

L

λ

[
K

W/m2

]
(7)

Ceq = ρ ·A · cp · L
[
J

K

]
(8)

ceq =
Ceq

A
=

ρ ·�A · cp · L
�A

= ρ · cp · L
[

J

K ·m2

]
(9)

τ = Req · Ceq = req · ceq =
L2 · ρ · cp

λ
[s]

(10)

with L the thickness of the material (m), λ the
thermal conductivity of the material (W/(m ·K)),
A the surface area (m2), ρ the material density
(kg/m3), and cp the specific heat capacity420

(J/(kg ·K)). The attentive reader will notice τ
being expressed in seconds, in line with its electrical
definition.
Table 2 gives theoretical values for a generic

PV module, with an air film calculated to obtain425

req ≈ 34.15 K
(1000·W/m2) , and an equivalent area Aeq

for the aluminium frame, at zero wind speed. τ0
is the value of τ at near-zero wind speeds. The
contribution to req by the aluminium frame is
minimal, yet the C-value of the aluminium frame430

is not negligible, thereby affecting the module’s
thermal time constant: setting the thickness L of
the Al frame to zero, results in τ0 ≈259 s. The
values in Table 2 illustrate the large impact of
the air films on the value of req,total, whereas435

req,module is an order of magnitude smaller. This
aligns with known properties of air, which is an
excellent insulator (low thermal conductivity λ or
high thermal impedance (1/λ) and relatively high
thermal capacity cp), provided the air remains440

in place. Moreover, modifying the air film at

the back of a PV module for on-roof systems to
have an increased thickness L = 4.2mm, gives
req = 50 mK

(W ·m2) , or expressed in terms of Faiman’s

simplified model, U0 = 20.0, which hews closely445

to default values used in PVsyst (Uc = 15
ηo−ηe

≈
15

0.9−0.15 = 20 for on-roof PV systems) [25]. From

Equation (10), it is clear that τ ∝ L2, so that the
equivalent thickness of the module and air film will
affect τ strongly.450

4.2. Improved filtering for robust and replicable
coefficient determination

In the proposed Filter - Exponential Weighted
Mean - Mean Bias Correction (FEM) methodology,
filtering is the first step.455

Replicable determination of model coefficients is
key for any model to be useful. While the explicit or
implicit approaches as presented by the respective
authors (Ross [7], King et al [8], and Faiman [9]) can
be applied, their replicability when using (nearly)460

full-year datasets leave something to be desired1.
If instead the coefficients are linked to

fundamentals as seen from the RC-equivalent
model, improved filtering approaches can be
identified.465

4.2.1. Determination of req, rM and rfilm
The determination of the maximum equivalent R-

value req,max is achieved by solving Equation (2),
Equation (3), or Equation (5), by setting the wind
speed equal to zero under steady-state conditions:470

req,max =
To

G

∣∣∣∣
WS=0

[
K

W/m2

]
(11)

⇒ req,max = k = ea =
1

U0

[
K

W/m2

]
(12)

Steady-state conditions can be approximated by
using averaged data, with intervals ≥5min. In
practice, req,max is determined from a regression of
To versus G at near-zero wind speeds (<0.5m/s).
By contrast, the minimum equivalent R-value475

req,min occurs at maximum wind speed (WS →
∞):

req,min =
To

G

∣∣∣∣
WS→∞

≈ rM

[
K

W/m2

]
(13)

⇒ req,min =︸︷︷︸
WS→∞

ea+b∗WS =
1

U0 + U1 ·WS
(14)

1The authors were more concerned with rapid coefficient
determination from e.g. one week’s worth of data [9].
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Table 2: Values for a representative glass-tedlar Smart PV module installed at KU Leuven Technology Campus Ghent, rooftop
array [27], with thermal data from [28] and the module manufacturer, Soltech.

Layer L
[mm]

λ[
W

m·K
] ρ[

kg
m3

] c[
J

kg·K
] Aeq

[m2]
m
[kg]

req[
mK

W/m2

] ceq[
kJ

K·m2

] τ0
[s]

Air filmfront 1.5 0.023 1.23 1000 1.6 0.00 65.22 0.0 0.1
Al framefront 2 237 2700 900 0.296 1.60 0.01 4.9 0.0

Glass 3.2 1.8 3000 500 1.6 15.36 1.78 4.8 8.5
EVA 0.5 0.35 960 2090 1.6 0.77 1.43 1.0 1.4

PV cells 0.1 148 2330 677 1.6 0.37 0.00 0.2 0.0
PV cells 0.1 148 2330 677 1.6 0.37 0.00 0.2 0.0
EVA 0.5 0.35 960 2090 1.6 0.77 1.43 1.0 1.4
Tedlar 0.3 0.2 1200 1250 1.6 0.58 1.50 0.5 0.7

Al frameback 2 237 2700 900 0.296 1.60 0.01 4.9 0.0
Air filmback 1.5 0.023 1.23 1000 1.6 0.00 65.22 0.0 0.1
Totalfront 3.22 10.8 34.8
Totalback 2.94 6.5 19.0

Totalfront+air 68.43 10.8 740.6
Totalback+air 68.16 6.5 441.2

Total 21.42 1.54 17.3 26.5
Totalair 21.42 34.15 17.3 590.6

To then determine rfilm, it suffices to obtain the
value of req at low and high wind speeds, using
Equation (15), as shown in Figure 3.480

req,tot = rM︸︷︷︸
req,min@WS≈∞

+ rfilm︸ ︷︷ ︸
∆req=req,max︸ ︷︷ ︸

@WS≈0

−req,min

(15)
It must be noted however, that rM as calculated

here, is the residual and weather-impacted value
of rM , which will deviate from the physics-based
calculations.485

Thus, when wind speed data is available, filtering
data at e.g. 5min time resolution for wind speeds
as close as possible to zero, and maximum wind
speeds, then gives the conditions through which to
determine req, by fitting a regression line to the490

respective filtered datasets.
The temperature increase of PV modules due

to irradiance, e.g. with G = GSTC , can
then be calculated. A value2 of req,max =
35

1000

[
K

W/m2

]
= 35

[
mK

W/m2

]
thus results in a module’s495

2While numerically req,max = kRoss has often been
reported in the literature as e.g. k = 0.035, it helps to
understand and communicate that such a module would be
35K hotter than ambient temperature with G = GSTC ,
which is achieved by the slightly more onerous notation
employed here.

over-temperature To versus ambient being equal to
35K, which can be determined both outdoors and
indoors in a laboratory setting.

200 400 600 800 1000
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5
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10

15

20

25

30

T o
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req, max = 35.7
1000  K

W/m2 , rM = 14.1
1000  K

W/m2 , rfilm = 21.6
1000  K

W/m2

To @ WS<0.5 m/s
To @ WS>7 m/s
req, max @ WS<0.5 m/s
req, min @ WS>7 m/s

Figure 3: Example determination of req , rM and rfilm.

The effective maximum wind speed to use
in thermal models can be established from the500

frequency distribution of the wind speeds for a site.
Figure 4 shows that a reasonable estimate for the
maximum wind speed to use for thermal models is
6m/s to 8m/s for 5min data. However, some sites
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may have very low wind speeds recorded, due to505

either the local conditions (e.g. nearby buildings
or trees that block winds), or the placement of the
wind sensor not being representative for the array.

4.2.2. Determination of ceq from τ

The equivalent C-value ceq of a module cannot510

be determined directly from the measured data;
instead, it is calculated from Equation (10). Similar
to the determination of req,max and req,min, the
minimum and maximum equivalent C-value ceq
require data from low and high wind speeds:515

ceq,min =
τ0

req,max

∣∣∣∣
WS=0

[
J

K ·m2

]
(16)

ceq,max =
τ0 · e−WS/f

req,min

∣∣∣∣
WS→∞

[
J

K ·m2

]
(17)

4.3. Proposed alternative thermal models

4.3.1. Wind Model 1

Wind Model 1 (WM1) is proposed here, as given
in Equation (18), which showcases the irradiance
heating and convective cooling components:520

To =

heating︷ ︸︸ ︷
k ·G ·

(
1 −

(
1− e

−WS
d

)︸ ︷︷ ︸
convective cooling

)
= k ·G · e

−WS
d

(18)
A sequence of linear regressions becomes possible
for WM1, as k = req,max can be found when setting
the wind speed equal to zero.
From Equation (12), k = ea was identified. This

allows the Sandia model to be rewritten, using525

ea+b·WS = ea · eb·WS and b = − 1
d , in the steady-

state formulation:

To = G · ea+b·WS = k ·G · e−WS
d (19)

As such, WM1 is functionally identical to the
Sandia model when the same coefficients are used.
In practice, WM1 will typically differ from the530

Sandia model, due to the different methods and
philosophies used: two linear regressions for WM1
for low wind (k = req,max) and d for high irradiance
and varying wind speeds, versus a single linear
regression for the Sandia Model for all irradiance535

and wind conditions.
Note also that Equation (18) with WS =

0 reduces to Ross’s model formulation, thus

giving a mathematical bridge between the different
thermal model forms of Ross, Sandia, and WM1.540

By extension, this applies also to WM2 (see
Section 4.3.2) and Faiman’s model. Driesse et al
show that model parameters can be translated for
the models of Faiman, King et al (Sandia), PVsyst,
and the System Advisory Model NOCT approach,545

albeit using a different calculation route [35].

4.3.2. Wind Model 2

The second thermal wind model (WM2) that is
proposed here also employs k. WM2 is given in its
simplest form as550

To = G·
(
k−kW ·WS

∣∣
WS≤8

)
= G·k−G·kW ·WS

∣∣
WS≤8︸ ︷︷ ︸

1
h

(20)
which has the wind speed clipped at 8m/s,

informed by the knowledge from Figures 1 and 4.
(This avoids To becoming negative at very high
wind speeds.) The convective heat transfer
coefficient h = 1

kW ·WS

[
W

m2·K
]

is seen here555

as being composed of the wind speed and the
coefficient kW . WM2 is essentially a more general
form of thermal models in the literature [10] of the
form

TM =Ta + k ·G− kW ·WS + c (21)

To =k ·G− kW ·WS + c (22)

albeit with a dynamically3 varying convection560

coefficient. Equation (20) reflects that higher
convection losses are driven by higher irradiance,
i.e. that the module must first gain heat via
irradiance, before the wind can remove a larger
amount of heat under high irradiance conditions.565

The irradiance convection coefficient kW is
calculated from a linear regression of linear
regression coefficients, shown in Figure 5:

• For each irradiance bin of 20W/m2 width, for
irradiances between 200W/m2 to 1000W/m2,570

find the regression coefficient mW (G) of To

versus wind speeds (0.5m/s to 8m/s).

• Fit a regression line of the mW (G)
points versus irradiance G (200W/m2 to
1000W/m2). The resulting linear regression575

coefficient is kW .

3It is also possible to calculate and use 1/havg as the
annual mean of 1/h = G · kW . hfixed calculated thus is
similar to values reported in ref [49] from [10].
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Figure 4: Kernel density estimate distributions of wind speed values, depending on time resolution and data treatment, for
KUL Ghent and NIST Ground arrays. These show the well-known Weibull distribution. For both sites, wind speeds above
8m/s are exceptionally rare, with 90% of wind speeds below 5m/s. Note also the shift in the peak (most frequently occurring)
wind speed for the different time resolution and treatment.

4.4. Determination of the thermal time constant τ

The thermal time constant τ can be identified
through sustained step changes of both irradiance
and the over-temperature. As the wind speed580

also affects τ , multiple linear regressions for wind
speed bins (0m/s to 1m/s, 1m/s to 2m/s, ...)
with minimal variation (i.e. avoiding wind gusts
and lulls) need to be done, similar to how the
convection coefficient kW for WM2 is calculated.585

An illustrative image is given in Figure 6.
For each wind speed bin:

• Filter: Resample To and G to 5min averages:

Daylight and sufficient module heating:
G > 200W/m2,590

Wind speed bin: WSmin,bin < WS <
WSmax,bin,

Ensure limited wind speed variation:
|∆WSbin| < σWS,full dataset.

• Find step changes: Determine the difference595

for To,5min and G5min between four 5min
intervals, i.e. 20min apart4 for each wind speed
bin of 1m/s width, from 0m/s to 8m/s.

4From the data, this appears to be the longest,
most frequent, duration of low-high-low or high-low-high
irradiance and To step change sequences.

• τ per wind speed bin: determine the slope
of the regression line of ∆To

∆t versus ∆G
∆t , for a600

total time interval ∆t =20min. The aim here
is to isolate the value of τ for each wind speed,
which rests on using the formulation of WM1.
τ(WS) is then:

τ(WS) =
∆To/∆t

∆G/∆t
/req,max ·∆t

=
req · (∆G · e−WS/d)/∆t

∆G/∆t
/req,max ·∆t

=
(��∆G · e−WS/d)/��∆t

��∆G/��∆t
· req ·∆t

req,max︸ ︷︷ ︸
τ0

= τ0 · e−WS/d ≡ τ0 · e−WS/f [s] (23)

Note that the wind speed coefficient d605

from WM1 is different from the wind speed
coefficient f , as the latter is determined for
step changes, whereas d is found in steady-
state (-like) conditions. Generally, f has a
larger magnitude than d (i.e. smaller effect),610

which corresponds to step changes in wind
speed having a smaller effect than a cumulative
consistent wind speed.

The value of τ typically decreases for increasing
wind speed, as the module reaches its “steady615

state” situation more rapidly [17]. This is also the
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Figure 5: Determination of the convection coefficient kW for WM2, for the DOE system luemkoy. Each coloured dot in the top
pane is the respective regression line coefficient found at that 20W/m2 irradiance bin. Due to the definition in Equation (20),
kW is typically a positive coefficient.

basis for the equivalent wind film resistance rfilm
to be variable, as it encompasses the interaction of
module mounting and wind access to the module
surface(s). For most sites, an exponential decrease620

of τ can be observed in Figure 7. This relationship
may break down for high wind speeds when it
becomes highly turbulent (air films poorly or only
partially refreshed over the module surface) or at
very low wind speeds (insufficient or poor forced625

convection) at the module surface. Wind direction
will thus affect τ and its determination, yet even
in the absence of wind direction data, a serviceable
value of τ can be found.

With the knowledge that τ is not constant,630

the question arises as to which value results in

lowest model errors when employed for the EWM
calculation: For practical computational purposes
using the pandas library in python [26], a constant
value for τ must be used. In practice, τ needs635

to be sufficiently low to accurately capture faster
irradiance and wind speed changes. This informs
then the value of τ used for the EWM step, as
the last wind speed bin where τ is still decreasing
monotonically, from a maximum value of τ0 found640

at 0m/s to 2m/s, with an error margin of 20 s,
as shown in Figure 7. The assumption of a purely
monotonic decrease of τ versus the wind speed does
not hold true for all sites. In particular for the
systems (1, 2A and 2B) from [24], it appears from645

the photographs that the wind direction and local
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Figure 6: Determination of τ for the DOE system lwcb907. Each coloured dot in the top pane is the respective regression line
coefficient found at that wind speed bin.

wind barriers likely play a large role in module
cooling, and therefore the determination of τ .
Similarly, the KUL single-axis tracker module sees
a very aggressive decrease in τ , which may be due650

to the tracker adjusting its position throughout the
day, and thus seeing higher effective wind flow over
the module, compared to a fixed orientation.

Table 3 gives an average value and standard
deviation σ for τ for 1 s to 5min data as (364±90) s655

or (6.0± 1.5)min when the single-axis tracker data
is included, and (379±60) s or (6.3±1.0)min when
the single-axis tracker is excluded (i.e. for fixed
mounting only). These results are broadly in line
with the literature, with [17] giving τ = 6min at660

WS = 2.14m/s, τ = 7min for floating PV [22],
and for System 1, 2A, and 2B at 10min, 8.5min,

and 9min respectively [24].
While not shown, most sites will see the KPIs

(RMSE, MAE and MBE) vary moderately when τ665

differs from the value calculated using the approach
shown in this work by 0.5min to 1min, as long
as τ is broadly in line with the expected value
for that site and mounting conditions. As such,
a value for τ in the range of 5min to 7min can be670

safely used for most fixed-mount PV systems with
open back. Further research on other mounting
conditions, including tracking systems and on-roof
arrays with reduced air gaps, is warranted.

4.5. The exponential weighted mean675

The exponential weighted mean (EWM) is the
second step in the FEM methodology.
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Figure 7: Values found for τ for wind speed bins for all datasets <1 h, with the excluded data points indicated, as well as the
value of τ used for the EWM.

For simplicity, assuming a situation with zero
wind at steady state with high irradiance, sees the
over-temperature (=voltage) at its maximum value.680

If the irradiance (=current) drops precipitously
(e.g. cloud moving in front of the sun), this is the
equivalent of opening a switch, with the thermal
capacitor discharging its stored energy through the
resistor req. Over a time step ∆t, the temperature685

drop of the module is mediated by:

∆To(∆t) = ∆G(∆t) · req︸ ︷︷ ︸
∆V

·e−∆t/τ (24)

To(t+∆t) = To(t) + ∆To(∆t) (25)

As such, it is evident that the temperature of a
PV module depends on what happened in previous
time steps. However, the impact of the past on the690

present decreases exponentially, as each time step is
then subject to a change mediated by 1−e−∆t/τ , i.e.
a sequence of step changes of duration ∆t subject
to an irradiance step change ∆G (positive, zero, or
negative). This is the definition of an exponential695

weighted mean (EWM), which uses the smoothing

parameter α:

α = 1− e−∆t/τ with 0 ≤ α ≤ 1 (26)

The advantage of using α is that it adapts to a
changing time resolution, so that the appropriately
scaled effect is obtained for both 1 s data and 5min700

data. The span is the number of time steps ∆t used
for the calculation of the EWM, and relates to the
smoothing parameter α (and the time constant τ):

span =
2

α
− 1 =

2

1− e−∆t/τ
− 1 ≃︸︷︷︸

∆t≤τ

2 · τ (27)

For a value of τ = 300 s (5min), the EWM
will thus incorporate the impact of irradiance up705

to 10min in the past. This also suggests that
this would be the time taken for the model to
“catch up” to measured data in special conditions
(early mornings, after heavy rain events), where
the model error inevitably would be larger than710

during the rest of the day, as the EWM calculation
has insufficient data, possibly combined with effects
such as evaporative cooling after a rain event.
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Table 3: Measured-calculated data for the different datasets. f is to calculate τ(WS), using τ0. The value of τ is used for the
EWM approach within the FEM methodology in this work. The DOE data is separated by geographical sites, with two arrays
per site. Contrast τ found here with values calculated by Barry et al for U. H. systems 1, 2A, and 2B at 589 s, 509 s, and 547 s
respectively [24].

Org. Site req,max[
mK

W/m2

] rM[
mK

W/m2

]rfilm[
mK

W/m2

]ceq,max[
kJ

K·m2

] cM[
kJ

K·m2

]cfilm[
kJ

K·m2

] τ0
[s]

τ
[s]

∆t
[s]

f[
s
m

]
KUL B roof 1s 35.4 15.3 20.1 37.7 26.9 10.8 576 410 1 11.8
KUL B roof 1min 34.8 15.3 19.5 37.4 23.8 13.6 572 364 60 15.53
KUL B roof 5min 35.4 15.6 19.8 37.5 22.6 14.9 584 352 300 13.82
KUL APV HAX front 12.2 5.3 6.9 102.8 16.6 86.2 545 87 60 2.74
NIST Ground RTD 4 10s 31.3 14.0 17.3 36.4 - - - - 10 16.16
NIST Ground RTD 4 1min 31.2 14.0 17.2 36.5 23.9 12.6 510 334 60 16.56
NIST Ground RTD 4 5min 32.7 14.0 18.7 35.5 23.7 11.8 497 332 300 14.91
NIST Ground RTD 8 10s 36.2 16.8 19.4 30.5 21.5 9.0 513 361 10 19.98
NIST Canopy E RTD 4 10s 41.6 17.2 24.4 27.1 14.0 13.1 465 241 10 12.17
NIST Canopy W 10s 38.2 18.5 19.7 27.6 16.0 11.6 511 295 10 14.57
DOE c10hov6 35.0 18.5 16.5 41.0 - - - - 60 16.01
DOE t3pg1sv 34.9 18.8 16.1 40.0 22.7 17.3 752 426 60 17.53
DOE wca0c5m 30.7 18.6 12.1 31.5 25.5 6.0 586 474 60 33.14
DOE z0aygry 30.1 18.0 12.1 32.4 25.4 7.0 583 456 60 28.63
DOE lwcb907 37.2 19.1 18.1 29.7 20.0 9.7 567 382 60 20.24
DOE luemkoy 35.8 17.7 18.1 32.1 21.6 10.5 567 381 60 20.18
NREL Sanyo 32.2 16.3 15.9 40.2 25.7 14.5 655 418 60 11.17
U. H. System 1 31.5 19.9 11.6 37.8 16.4 21.4 751 326 60 4.8
U. H. System 2A 32.2 16.4 15.8 32.4 28.8 3.6 532 472 60 33.76
U. H. System 2B 23.1 16.4 6.7 31.8 25.9 5.9 522 425 60 24.33
Average ∆t ≤ 300 s 32.6 16.3 16.3 37.9 22.3 15.6 578 364 - 17.4

The exponentially weighted mean of the
irradiance is then:715

GEWM =

∑t=span
i=0 Gi · wi∑t=span

i=0 wi

=

∑t=span
i=0 Gi · (1− α)i∑t=span

i=0 (1− α)i

(28)

with weights wi at time step i given by:

wi = (1− α)i (29)

Similarly for a (sustained) step change in wind
speed, an equivalent effect will be seen on PV
modules. Compared to irradiance, the wind speed
is significantly more variable (less persistent), and720

thus makes identifying wind speed step change
effects more challenging.

With the above knowledge, the five models
discussed in this work can be made dynamic
through the use of EWM, achieving an improved725

RMSE and MAE at minute-to-second timescales.
The EWM is applied to both the irradiance and
wind speed signals. In python and pandas, the code

snippet where WM1 is made dynamic from its static
form is as follows:730

To_WM1 = k*df[‘G’]*np.exp(-WS/d)

alpha_EWM = 1-np.exp(-delta_t/tau)

To_WM1_EWM = k*df[‘G’].ewm(alpha =

alpha_EWM).mean()*np.exp(-WS.ewm(alpha

= alpha_EWM).mean()/d)735

With knowledge of the time resolution ∆t and τ ,
it is thus a simple change for any model to become
dynamic, which can be applied for existing systems,
as well as during the design and modelling phase.

4.6. Mean bias error correction740

The last step in the Filter-EWM-Mean bias error
correction (FEM) methodology is using the mean
bias error (MBE) from the training dataset, as
given in Equation (30). A bias is often observed
in thermal model data. Whereas Veldhuis et al745

[21] calculate this as the mean night-time radiation
bias = To,night,avg, this appears to give (slightly)
larger errors (RMSE, MAE, and MBE) than when
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using the MBE correction. Another noteworthy
approach by Driesse et al [36] could also be750

explored. Conceptually, the MBE correction can
be seen as the fixed radiative heat loss from the
module, as shown in Figure 2. To illustrate the full
FEM approach, WM1FEM is written out in full in
Equation (31), with the same method applied to all755

models in this work.

To,FEM =To,EWM,test

+MBEtrain (30)

To,FEM,WM1 =ktest ·GEWM · e−WSEWM/dtest

+MBEtrain (31)

5. Results & Discussion

5.1. RMSE, MAE and MBE model results

Tables 4 to 6 give the RMSE, MAE and MBE
results for all sites, models, and time resolutions760

studied, comparing the FEM approach versus the
standard approach from the literature (i.e. steady-
state, limited data filters, non-MBE corrected).

5.2. FEM versus standard approach on different
timescales765

Figure 8 shows that the RMSE and MAE of
the static models worsen when the time resolution
becomes shorter, with pronounced impacts at short
timescales, as the irradiance and wind speed signals
are then translated in the static model without time770

delay, which can result in impossible temperature
changes or unnecessary noise, especially for sub-
minute timescales. By contrast, the FEM approach
typically improves the RMSE and MAE values of
these models as time steps become shorter. In the775

non-FEM framework, WM1 and WM2 see the most
dramatic worsening of RMSE at shorter timescales,
which most likely is a consequence of the more
aggressive coefficients used, compared to the other
models. The ≤1min averaged data for both sites780

are given in Table 7, which show that both sites see
an average RMSE and MAE improvement from the
standard to FEM methodology of −1.3K (−40%)
and −0.9K (−37%) respectively.

5.3. Impact of filtering, EWM and MBE methods785

Figure 9 shows that all models benefit from
filtering, EWM, and MBE correction. The extent
to which each site and model benefits varies, with

an average improvement for all datasets for RMSE
of −0.7K to −1.5K (−20% to −40%) and MAE790

of −0.4K to −1.1K (−20% to −40%). All model
results for the FEM versus the standard approach
can be found in Tables 4 to 6. In Figure 9, the
mean RMSE benefit per category hides significant
variations that are observed per model. Given that795

Ross’s model works with no knowledge of wind
speeds, it benefits less from the FEM approach
than the other models which do incorporate wind
speeds. Overall, the overwhelming majority of
the 15 sites and 24 datasets see an improvement800

in the final Filtered-EWM-MBE error metrics, for
all five models tested. The average standard
deviation σ in the FEM RMSE and MAE values
versus the standard approach is halved, which is
of importance, as this reduces the uncertainty of805

the thermal model results, thus giving increased
confidence for financing of PV plants.

5.4. Impact on energy error estimates and the
importance of MAE

In the literature, the translation of the model810

error into power error is taken as RMSE ·γ, with γ
the module’s coefficient of power [9]. If this method
is applied to the module energy, an estimation error
can be made.

With Equation (32), it is possible to estimate the815

absolute and relative energy estimation error, due
to the temperature model error, for a given time
resolution. As an approximation, Equations (33)
and (34) can serve to quantify the estimation error.

∆E(|∆To,e|) =
N∑
0

Gi ·
∣∣To,model − To,meas

∣∣
i
· γ[

kWh

kWp · y

]
(32)

∆E(|∆To,e|) ≈ Hy ·MAE · γ
[

kWh

kWp · y

]
(33)

∆PR(∆To,e) ≈ MAE · γ
[
%

y

]
(34)

The directional error (energy over-, respectively820

under- estimation due to temperature under-,
respectively over- prediction) can be found by using
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Table 4: RMSE model results for all sites and time resolutions, FEM approach versus standard.

Org Site FEM standard
WM1 WM2 Ross Sand Faim WM1 WM2 Ross Sand Faim

KUL B roof 1s 1.39 1.54 2.12 2.09 1.53 3.53 4.01 3.12 2.78 3.1
KUL B roof 1min 1.41 1.5 2.11 2.08 1.58 3.0 3.45 2.92 2.54 2.63
KUL B roof 5min 1.51 1.65 2.13 2.12 1.63 2.65 3.17 2.57 2.23 2.2
KUL B roof 15min 1.76 1.75 2.06 2.08 1.98 1.84 1.87 2.52 1.96 1.92
KUL B roof 1h 1.55 1.69 1.91 1.9 1.79 1.58 1.66 2.47 1.69 1.63
KUL APV HAX front 1.77 1.79 1.77 1.77 1.78 1.74 1.71 1.7 1.67 1.69
NIST Ground RTD 4 10s 1.86 1.82 2.85 2.38 2.18 3.62 4.09 3.77 3.43 3.48
NIST Ground RTD 4 1min 1.88 1.84 2.85 2.38 2.2 3.33 3.81 3.65 3.23 3.23
NIST Ground RTD 4 5min 1.92 2.03 2.89 2.45 2.17 3.15 3.94 3.38 2.93 2.87
NIST Ground RTD 4 15min 2.34 2.24 2.82 2.41 2.6 2.56 2.55 3.27 2.66 2.86
NIST Ground RTD 4 1h 2.27 2.16 2.69 2.29 2.53 2.37 2.33 3.14 2.43 2.68
NIST Ground RTD 8 10s 1.91 2.0 2.94 2.58 2.16 4.33 4.99 4.04 3.7 3.93
NIST Canopy E RTD 4 10s 1.98 2.68 2.68 2.15 1.72 4.85 5.99 3.69 3.43 4.01
NIST Canopy W 10s 1.7 1.98 2.59 2.34 1.84 4.33 5.09 3.94 3.72 3.93
DOE c10hov6 2.44 2.7 3.52 2.51 2.79 3.43 3.72 4.45 3.41 3.67
DOE t3pg1sv 2.6 2.9 3.51 2.75 2.91 3.5 3.81 4.54 3.53 3.69
DOE wca0c5m 2.36 2.34 2.79 2.48 2.34 4.07 4.12 4.81 4.18 4.1
DOE z0aygry 2.05 2.04 2.57 2.36 2.05 4.14 4.23 4.98 4.17 4.15
DOE lwcb907 2.13 2.05 2.98 3.25 2.47 3.97 4.19 4.21 3.67 3.68
DOE luemkoy 1.78 1.78 2.74 2.45 1.97 3.36 3.56 3.53 3.1 3.14
NREL Sanyo 2.05 2.26 3.01 2.29 1.9 3.72 4.11 3.36 2.94 3.14
U. H. System 1 2.01 2.57 2.37 2.89 2.03 3.57 3.54 3.59 3.48 3.56
U. H. System 2A 1.48 2.47 2.63 1.44 1.55 3.02 3.74 3.63 2.98 3.1
U. H. System 2B 2.26 2.1 2.33 2.25 2.3 3.24 3.18 3.2 3.18 3.21
Avg all 1.93 2.08 2.62 2.32 2.08 3.29 3.62 3.52 3.04 3.15
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Figure 8: Comparison of the FEM implementation versus the static formulation for the five evaluated models, using data from
KUL (rooftop array) and NIST (ground-mount, RTD 4). No value for τ was determined at 1 h; hence no EWM impact here.

Equations (35) and (36).

∆E(∆To,e<0) =

N∑
0

Gi ·
(
To,model − To,meas

)<0

i
· γ

(35)

∆E(∆To,e>0) =

N∑
0

Gi ·
(
To,model − To,meas

)>0

i
· γ

(36)

For example, for the KUL Ghent rooftop array
at 1 s resolution, taking a thermal coefficient825
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Table 5: MAE model results for all sites and time resolutions, FEM approach versus standard.

Org Site FEM standard
WM1 WM2 Ross Sand Faim WM1 WM2 Ross Sand Faim

KUL B roof 1s 1.12 1.29 1.54 1.51 1.12 2.49 2.87 2.17 1.88 2.14
KUL B roof 1min 1.1 1.23 1.53 1.5 1.14 2.18 2.55 2.09 1.74 1.84
KUL B roof 5min 1.2 1.37 1.55 1.52 1.18 2.03 2.48 1.93 1.57 1.6
KUL B roof 15min 1.26 1.26 1.55 1.49 1.42 1.35 1.38 1.98 1.41 1.4
KUL B roof 1h 1.12 1.22 1.46 1.37 1.28 1.18 1.23 1.99 1.24 1.2
KUL APV HAX front 1.35 1.37 1.36 1.36 1.36 1.31 1.28 1.25 1.24 1.27
NIST Ground RTD 4 10s 1.4 1.43 2.11 1.78 1.61 2.6 3.01 2.7 2.37 2.42
NIST Ground RTD 4 1min 1.41 1.44 2.11 1.78 1.63 2.4 2.84 2.64 2.24 2.24
NIST Ground RTD 4 5min 1.47 1.62 2.14 1.83 1.59 2.38 3.09 2.49 2.05 2.02
NIST Ground RTD 4 15min 1.74 1.67 2.09 1.8 1.97 1.83 1.8 2.4 1.88 2.02
NIST Ground RTD 4 1h 1.71 1.63 2.0 1.73 1.93 1.71 1.64 2.3 1.72 1.91
NIST Ground RTD 8 10s 1.45 1.59 2.19 1.91 1.56 3.15 3.73 2.87 2.54 2.73
NIST Canopy E RTD 4 10s 1.55 2.18 2.03 1.64 1.29 3.61 4.64 2.63 2.38 2.83
NIST Canopy W 10s 1.32 1.58 1.99 1.8 1.39 3.2 3.89 2.83 2.6 2.78
DOE c10hov6 1.99 2.21 2.67 2.04 2.32 2.52 2.8 3.33 2.54 2.78
DOE t3pg1sv 2.09 2.35 2.69 2.22 2.38 2.58 2.87 3.44 2.65 2.8
DOE wca0c5m 1.84 1.82 2.2 1.94 1.82 2.98 3.05 3.62 3.05 3.04
DOE z0aygry 1.49 1.47 1.99 1.76 1.49 3.03 3.15 3.9 3.01 3.06
DOE lwcb907 1.45 1.41 2.11 2.53 1.77 3.06 3.25 3.3 2.81 2.82
DOE luemkoy 1.21 1.24 1.95 1.83 1.36 2.37 2.52 2.53 2.18 2.19
NREL Sanyo 1.48 1.67 2.17 1.61 1.33 2.81 3.17 2.41 2.09 2.28
U. H. System 1 1.54 1.87 1.81 2.21 1.54 2.53 2.44 2.5 2.58 2.49
U. H. System 2A 1.13 1.72 1.95 1.09 1.2 2.07 2.73 2.64 2.0 2.15
U. H. System 2B 1.73 1.52 1.69 1.68 1.77 2.31 2.25 2.26 2.25 2.29
Avg all 1.46 1.59 1.95 1.75 1.56 2.4 2.69 2.59 2.17 2.26

of power γ at −0.35%/K, a total energy
error of 4.09 kWh/kWp (0.39%-points on PR)
is found, with 1.96 kWh/kWp over-estimate and
−2.13 kWh/kWp under-estimate, resulting in an
naive error of −0.17 kWh/kWp, as most of the830

temperature model errors cancel out over the year.
A near-zero naive error does not apply to all
sites and models in their FEM form, as evidenced
in Figure 10. For the sites and datasets where
both WM1 and WM2 under-estimate the module835

temperature, this suggests that the coefficient k
is too low. The spread between under- and over-
estimation error is characterised by the MAE,
highlighting its importance as a model error KPI.

Note also that software that use longer time840

steps for the energy yield forecasts, e.g. 1 h time
steps for one-year calculations, may mis-estimate
the temperature impact on the yield, due to the
model error (which itself is impacted by the chosen
time resolution). As seen in Figure 8, the RMSE845

and MAE values in the non-FEM formulation

are approximately 0.8K to 1.5K higher than at
1 h for 1min to 5min data. Consequently, the
temperature impact on the energy yield is also mis-
identified. This is particularly important for the850

(initial) operational phase of the PV power plant
and the stakeholders involved, as the MAE on the
thermal model can thus result in a PR error of
0.5 pp to 1.5 pp.

5.5. Contextualisation: model error versus module855

sensors

So far, the discussion has focused on the resulting
error metrics on their own. However, it is useful to
contextualise these results against measured data.
One such thought experiment that can be done is:860

“How large is the error, if the data from
the (perfect) sensor is delayed by 1min to
10min?”.

For this, the sensor data is compared against
its time-delayed value. In the case of the KUL865
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Table 6: MBE model results for all sites and time resolutions, FEM approach versus standard.

Org Site FEM standard
WM1 WM2 Ross Sand Faim WM1 WM2 Ross Sand Faim

KUL B roof 1s -0.01 0.02 0.25 0.09 -0.02 -1.71 -2.21 -1.08 0.01 -0.96
KUL B roof 1min -0.01 0.01 0.24 0.08 -0.02 -1.53 -2.02 -1.08 0.04 -0.78
KUL B roof 5min -0.02 0.0 0.24 0.09 -0.02 -1.64 -2.21 -1.08 0.05 -0.81
KUL B roof 15min 0.0 -0.03 0.24 0.08 0.01 -0.46 -0.44 -1.51 0.0 -0.08
KUL B roof 1h 0.01 -0.06 0.24 0.06 0.01 -0.65 -0.3 -1.75 -0.07 -0.21
KUL APV HAX front -0.09 -0.09 -0.06 -0.07 -0.09 -0.3 -0.23 -0.0 0.04 -0.2
NIST Ground RTD 4 10s 0.17 0.16 0.08 0.15 0.17 -1.27 -2.02 -0.7 0.16 -0.4
NIST Ground RTD 4 1min 0.17 0.17 0.08 0.15 0.17 -1.21 -1.98 -0.7 0.17 -0.31
NIST Ground RTD 4 5min 0.17 0.17 0.09 0.15 0.17 -1.67 -2.64 -0.7 0.19 -0.58
NIST Ground RTD 4 15min 0.16 0.17 0.09 0.15 0.15 0.05 -0.28 -1.14 0.16 0.51
NIST Ground RTD 4 1h 0.15 0.17 0.08 0.15 0.14 0.06 -0.29 -1.37 0.06 0.49
NIST Ground RTD 8 10s 0.23 0.22 0.14 0.2 0.23 -2.1 -2.95 -0.91 0.12 -1.09
NIST Canopy E RTD 4 10s 0.02 -0.01 -0.11 -0.0 0.02 -2.92 -4.13 -0.74 0.18 -1.59
NIST Canopy W 10s 0.07 0.06 -0.03 0.07 0.08 -2.3 -3.22 -1.12 0.06 -1.31
DOE c10hov6 0.11 0.18 -0.18 0.11 0.09 0.35 0.96 -1.87 0.43 0.94
DOE t3pg1sv 0.15 0.22 -0.15 0.13 0.13 0.21 0.85 -2.0 0.44 0.76
DOE wca0c5m -0.01 -0.01 0.01 -0.0 -0.01 0.96 1.14 2.95 0.27 1.16
DOE z0aygry 0.05 0.05 0.07 0.05 0.05 1.88 2.13 3.48 0.29 1.98
DOE lwcb907 0.04 0.03 0.35 0.2 0.04 -2.16 -2.51 -2.0 0.1 -1.37
DOE luemkoy -0.05 -0.06 0.25 0.11 -0.04 -1.43 -1.73 -0.9 0.19 -0.76
NREL Sanyo 0.05 0.03 0.09 0.05 0.06 -1.86 -2.37 0.41 0.27 -0.88
U. H. System 1 0.84 0.83 0.8 0.7 0.81 -1.52 -0.47 -1.5 0.62 -1.45
U. H. System 2A 0.15 0.12 0.07 0.21 0.08 0.82 1.85 1.46 0.24 1.05
U. H. System 2B 0.33 0.3 0.2 0.28 0.32 0.25 -0.28 0.17 0.13 0.26
Avg all 0.11 0.11 0.13 0.13 0.11 -0.84 -1.06 -0.57 0.17 -0.23

Ghent roof B site, the module used has multiple
RTD sensors laminated against the cells, with two
backsheet sensors next to these. Thus, a backsheet-
to-cell (BS-C) correction can be done as per [8]
and Equation (37), with the added modification870

that the irradiance signal again has the EWM
methodology applied to it, and kBS−C the R-value
for the backsheet-to-cell difference.

Tcell,BS−C = Tbacksheet+GEWM ·kBS−C [K] (37)

Figure 11 shows that, while the RMSE and
MAE values for the models which incorporate wind875

speeds (WM1, WM2, King and Faiman) have
improved significantly through the use of the FEM
methodology, the sensor on the backsheet provides
an even better result. Applying the backsheet-
to-cell correction results in an MAE and RMSE880

of approximately 0.2K and 0.25K respectively,
which is well below the uncertainty of the RTD
sensors used (approximately 0.4K at k=2). In

practical terms, this means that (well-installed and
maintained) module sensors remain the preferred885

option against using a modelled value only, yet
the thermal model can be used, among others to
verify the quality of the sensor over time, as well as
to estimate or forecast future temperature values.
Contextualised versus time, the best models (at 1 s890

resolution) give approximately the same result as a
“true” 1min measurement point, delayed by 3min
(RMSE) and 5min (MAE).

5.6. Discussion

Figures 10 and 11 are confronting, with a895

sobering result: despite the significant improvement
to all of the models for nearly all of the datasets
tested in this work by using the FEM methodology,
much work remains to be done for thermal
models to approach the accuracy of measured900

data. Potential avenues to explore are to include
the relative humidity in the thermal model(s),
as done by [21, 22]. Investigating the impact
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Table 7: RMSE and MAE value comparison for ≤1min averaged data for the KUL rooftop and NIST ground-mount RTD 4
systems as seen in Figure 8. std = standard methodology, FEM = Filter-EWM-MBE correction method.

Org KPI WM1 WM2 Ross Sandia Faiman Average
KUL RMSE std [K] 3.26 3.73 3.02 2.66 2.86 3.11
KUL RMSE FEM [K] 1.4 1.52 2.12 2.08 1.56 1.74
KUL ∆RMSE [K] -1.86 -2.21 -0.9 -0.58 -1.31 -1.37
KUL ∆RMSE [%] -57.1 -59.2 -30.0 -21.6 -45.7 -44.2
NIST RMSE std [K] 3.48 3.95 3.71 3.33 3.36 3.56
NIST RMSE FEM [K] 1.87 1.83 2.85 2.38 2.19 2.22
NIST ∆RMSE [K] -1.6 -2.12 -0.86 -0.95 -1.16 -1.34
NIST ∆RMSE [%] -46.2 -53.7 -23.2 -28.5 -34.7 -37.6
KUL MAE std [K] 2.34 2.71 2.13 1.81 1.99 2.19
KUL MAE FEM [K] 1.11 1.26 1.54 1.5 1.13 1.31
KUL ∆MAE [K] -1.22 -1.45 -0.59 -0.31 -0.86 -0.89
KUL ∆MAE [%] -52.5 -53.5 -27.9 -16.9 -43.2 -40.4
NIST MAE std [K] 2.5 2.92 2.67 2.31 2.33 2.55
NIST MAE FEM [K] 1.4 1.44 2.11 1.78 1.62 1.67
NIST ∆MAE [K] -1.1 -1.49 -0.56 -0.53 -0.71 -0.88
NIST ∆MAE [%] -43.8 -50.9 -21.0 -22.8 -30.5 -34.4

of wind direction and/or local turbulence effects
may also further reduce model errors, albeit likely905

at high model complexity or computational cost.
Additionally, correcting for precipitation events
(e.g. by setting To = 0 during heavy rain) can
reduce temperature model errors, although this
changes little to the fundamental model behaviour910

and its KPIs during times without rain.

The conceptual model and theoretical
calculations versus measured data summarised in
Tables 2 and 3 indicate that while wind access to
the module surface(s) can be very important, the915

fact that heat removal paths occur via the front
and back of the module which are in parallel to
the heat source, sees a more limited effect than
otherwise expected. For example, if wind hits the
front glass and reduces the effective wind film layer920

thickness, the back is affected very little, leaving
a high R-value in place, and vice versa for wind
from the back. Nevertheless, this also suggests
that local obstructions will also result in wind
direction effects, e.g. for a row of trees on one side925

of an array, up to wind barrier effects from rows
of modules for utility-scale PV farms. As such,
the wind speed signal on its own does not suffice
when attempting to reach RMSE and MAE values
below 1K. Quantifying the magnitude of such930

wind direction effects still needs to be done, and
verifying such data using finite element analysis
and wind tunnel experiments are interesting

avenues for further work.

An under-appreciated nuance in the PV935

field by different stakeholders (financiers, asset
owners/investors, and engineering-procurement-
construction (EPC) companies) in using (thermal)
models ex-ante (i.e. forecast, with zero
measurement data, prior to system construction)940

for ex-post evaluation (i.e. comparison of
measured data of the built PV system against the
thermal model). As seen in Sections 5.2 and 5.3,
thermal models can vary significantly for different
timescales, and local wind access to modules is945

estimated, based on best available knowledge.
Historically, most “bankable” PV modelling
software packages output hourly data, which then
form part of the contractual model for a PV system.
Performance ratio calculations, yield comparisons,950

and model corrections (e.g. for different weather
conditions versus the contractual model) are thus
placed at that time resolution, whereas the true
performance of the system has in reality evolved
in much shorter time steps, subject to varying955

weather conditions: wind gusts and lulls, irradiance
peaks and troughs, ambient temperature, humidity,
and precipitation. As discussed previously, the
sequence of weather events plays a material role
in the eventual temperature of the PV module,960

whereas such results are hidden (or lost) when an
hourly resolution is employed [37, 38].

If the MAE and RMSE of the thermal model vary
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Figure 9: Waterfall and boxplot charts for the five thermal models, evaluated on the datasets; top row is RMSE, bottom row is
MAE. The boxplots show the spread around the mean values used in the waterfall, while the waterfall shows the average trend
and impact per category. Boxplot outliers are marked when data are beyond the whiskers, which extend 1.5 times the inter-
quartile range, shown by the box. The median value is marked for each boxplot; results are shown in blue, and intermediate
steps, such as the impact of the EWM approach, are red.

(strongly) with time resolution, this also impacts
the attribution or estimation of effects on a PV965

system’s performance, which can be at least 0.5 pp
to 1.5 pp on the PR. The asset owner and EPC
(and/or operations and maintenance provider)
may thus be presented with a quandary: a PV
system may be under-performing compared to the970

guaranteed yield or PR, yet the contractual model
with measured weather data (at 1 h resolution)
appears to meet expectations.
At such a moment, the need arises for clear

attribution of effects on system performance, for975

which higher-resolution data must be used, where
the FEM approach can aid to estimate thermal
effects. A further point which may be subject to
discussion is whether thermal model coefficients
used for the contractual model are fixed (which980

may still be the case for contractual discussions),
while an updated energy estimation model with
coefficients from measured data can be used for the
asset owner financial forecasts.
An additional key point to consider is that the985

model coefficients are determined in this work for
data of PV systems that see limited to zero power-
constrained conditions, such as inverter clipping or
mandated curtailment. The linearisation approach

used in this work for coefficient determination will990

not work as well for power-constrained conditions,
which depend on the system configuration and
local grid conditions, as well as the local weather.
Given the trends for increased DC-AC ratios of PV
systems, as well as mandated curtailment due to995

increasing Renewable Power Fractions [1, 39], this
is a challenge for thermal models that is yet to be
addressed.

5.7. Linear regressions and coefficients

Table 9 summarises the filters used and the1000

regression equations to determine the coefficient for
each of the models studied in this work. Here,
the models WM1, Sandia and Faiman first need to
determine the heating coefficient req under near-
zero wind speeds, and then evaluate the cooling1005

impact of wind at high irradiance to find the
wind cooling coefficient. By contrast for WM2,
the premise that the same wind speed at higher
irradiance cools a module more, requires three
regression steps in total. In practice, this can limit1010

the appeal for WM2.
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Table 8: Average standard and FEM methodology RMSE and MAE values for all models and datasets as shown in Figure 9,
with additional MBE data.

Model WM1 WM2 Ross Sandia Faiman Average
RMSEstd [K] 3.29 3.62 3.52 3.04 3.15 3.32
RMSEFEM [K] 1.93 2.08 2.62 2.32 2.08 2.21
∆RMSE [K] -1.36 -1.54 -0.9 -0.72 -1.07 -1.12
∆RMSE [%] -41.3 -42.5 -25.6 -23.7 -34.0 -33.4

σRMSE−std [K] 0.84 1.05 0.78 0.7 0.74 0.82
σRMSE−FEM [K] 0.34 0.38 0.45 0.36 0.39 0.38

MAEstd [K] 2.4 2.69 2.59 2.17 2.26 2.42
MAEFEM [K] 1.46 1.59 1.95 1.75 1.56 1.66
∆MAE [K] -0.94 -1.1 -0.64 -0.42 -0.7 -0.76
∆MAE [%] -39.2 -40.9 -24.7 -19.4 -31.0 -31.0

σMAE−std [K] 0.63 0.82 0.6 0.52 0.54 0.62
σMAE−FEM [K] 0.27 0.31 0.34 0.31 0.34 0.31
MBEstd [K] -0.84 -1.06 -0.57 0.17 -0.23 -0.51
MBEFEM [K] 0.11 0.11 0.13 0.13 0.11 0.12
∆|MBE| [K] -0.73 -0.95 -0.44 -0.04 -0.12 -0.46

Table 9: Filters used, linear regression equations per model for each coefficient, and resulting values (average ± standard
deviation) with the FEM approach, for all datasets ≤1min; Coefficient determination with 5min averaged data.

Filter WM1 WM2 Rossa Sandia Faiman

WS<1 m/s,
G=200-1100 W/m2

k = To

G k = To

G k = To

G a = ln(k) U0 = 1
k

1<WS<8 m/s,
G=900-1100 W/m2

− 1
d = ln(To/G)

WS b = ln(To/G)
WS U1 = G/To

WS

0.5<WS<8 m/s,
20W/m2 bins,
G=200-1000 W/m2

mW = To(G)
WS

G=200-1000 W/m2 kW = mW

G

Heating coeffb k = 33.6±4.1
1000 k = 33.6±4.1

1000 k = 24.9±3.1
1000 a = −3.56±0.13 U0 = 30.2± 4.2

WS cooling coeffb d = 10.6± 4.2 kW = 2.85±0.9 b = −0.09±0.05 U1 = 4.97±1.94
a Ross: no wind filter.
b Average value ± standard deviation.
c Empty cell = Not applicable.

6. Conclusions

This paper has presented a framework for
thermal models, based on an RC-equivalent
conceptual thermal model of a PV module. Using1015

this conceptual model, it is possible to determine
the equivalent thermal resistance and capacitance
of a PV module, as well as the thermal time
constant.
Informed by the RC-equivalent thermal model,1020

improved filtering approaches to determine

coefficients were shown (particularly for low and
high wind speeds), which form the first step in the
filter-EWM-MBE correction (FEM) methodology.
This then also facilitates the determination of1025

the module thermal time constant τ , which is
shown to vary in function of the wind speed. The
exponential weighted mean (EWM) calculation
of irradiance and wind speed signals can then be
calculated using the time step ∆t and τ . The1030

EWM step makes a static model dynamic. By
then using the Mean Bias Error of the training
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Figure 10: PR estimation error, using γ = −0.35%/K. A
model under- (over-) estimation occurs when the modelled
temperature is lower (higher) than the measured value.
The spread between under- and over-estimation error is
characterised by the MAE.

dataset as a fixed radiation loss value, the FEM
methodology is complete.
With req,max = k = ea = 1

U0
, two thermal1035

models (WM1 and WM2) are proposed, where
WM1 is a modified form of the Sandia model,
with the coefficients for WM1 determined in two
regression steps, compared to the single regression
used for the Sandia model. The four models which1040

incorporate the wind speed (WM1, WM2, Sandia,
and Faiman), reduce to Ross’ model when the wind
speed is equal to zero.
Despite the significant improvement to all of the

models for nearly all of the datasets tested in this1045

work by using the FEM methodology (with an
average improvement for all models and datasets
for RMSE of −0.7K to −1.5K (−20% to −40%)
and MAE of −0.4K to −1.1K (−20% to −40%),
much work remains to be done for thermal models1050

to approach the accuracy of measured data. As
such, having well-installed and maintained module
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Figure 11: KUL Ghent: RMSE and MAE values of models,
versus time-delayed measured data, including backsheet data
with backsheet-to-cell correction.

temperature sensors should be the preferred option,
yet the FEM methodology can be used for pre-
and post-installation temperature estimations, and1055

used among others to monitor sensor quality. The
EWM step is particularly useful for pre-installation
and design modelling. The average standard
deviation σ in the FEM RMSE and MAE values
is halved versus the standard approach, which is1060

of importance, as this reduces the uncertainty of
the thermal model results, thus giving increased
confidence for financing of PV plants which apply
the FEM methodology.
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